scholarly journals Two-phase natural-circulation experiments in a test facility modeled after Three Mile Island Unit-2. Final report

1981 ◽  
Author(s):  
R.L. Kiang
2012 ◽  
Vol 33 (9) ◽  
pp. 775-785 ◽  
Author(s):  
Pathayapurayil Pradeep Kumar ◽  
Amod Khardekar ◽  
Kannan N. Iyer

2008 ◽  
Vol 2008 ◽  
pp. 1-5
Author(s):  
José N. Reyes

Natural circulation experiments were conducted at Oregon State University using the advanced plant experiment (APEX-CE) integral system test facility as configured to simulate a typical2×4Combustion Engineering nuclear steam supply system. This paper describes the mechanisms by which natural circulation flow was interrupted under single-phase and two-phase natural circulation conditions in APEX-CE.


1980 ◽  
Author(s):  
W. Kennedy ◽  
M. Jacob ◽  
J. Whitehouse ◽  
J. Fishburn ◽  
G. Kanupka
Keyword(s):  

Author(s):  
Yikuan Yan ◽  
Shanbin Shi ◽  
Mamoru Ishii

Small modular reactor (SMR) concept has been developed as one of the key solutions for the growing demand of safe and clean energy. SMR designs can be applied extensively in areas such as sea water desalination and small-scale power generation etc. Unlike conventional light water reactors, most SMRs greatly simplify the structure of reactor pressure vessel, usually eliminate pumps and use natural circulation to cool down the core and transfer energy. However, flow instability may easily occur and affect the entire two phase natural circulation, which is of great importance for the start-up and normal operation process of BWR-type SMRs. For PWR-type SMRs, two-phase natural circulation could exist during accidents such as small break loss of coolant accident (SBLOCA) and loss of heat sink. Current research aims to experimentally investigate potential flow instabilities related to natural circulation for a PWR-type SMR during the accidents. For current research, the NuScale reactor design is selected as the research prototype. In this paper, the design and scaling analysis of a scaled PWR-type experimental facility are provided. In order to experimentally study the natural circulation behavior of PWR-type SMR during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. A three-level scaling method is used to get the scaling ratios derived from various non-dimensional numbers. An ideally scaled facility is first accomplished based on derived scaling ratios. RELAP5 simulations of both steady state and transient cases for the ideally scaled facility are performed and compared to the prototype to ensure the accuracy of the scaling analysis. Then the ideally scaled facility is modified under engineering considerations and an engineering scaled facility is designed. Similar RELAP5 analyses are performed on the engineering scaled facility and the results match well with those in the prototype and ideally scaled facility.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Dong Hun Lee ◽  
Su Ryong Choi ◽  
Kwang Soon Ha ◽  
Han Young Yoon ◽  
Jae Jun Jeong

A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i) it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii) it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii) the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH) code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.


Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 631-636
Author(s):  
Li Zi-chao ◽  
Qi Shi ◽  
Zhou Tao ◽  
Li Bing ◽  
Muhammad Ali Shahzad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document