scholarly journals Development of underground-mine cost-estimating equations. [Dependence of initial capital cost, deferred capital cost and annual operating cost on region, annual mine output and seam depth]

1981 ◽  
Author(s):  
◽  
2013 ◽  
pp. 307-354 ◽  
Author(s):  
Gavin Towler ◽  
Ray Sinnott
Keyword(s):  

2001 ◽  
Vol 24 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Michael. S. Snowden

AbstractAn unproductive 45-cm astronomical telescope, given by JICA (Japan) to Sri Lanka, raises general questions as to the reasons for unproductive pure science in developing countries. Before installation, site, maintenance, and scientific objectives were discussed. The facility was launched with a conference organised by the UN Office for Outer Space Affairs. Unfortunately, no research or significant education has resulted after four years. The annual operating cost is U.S. $5000 per year, including salary for a trainee, maintenance, and a modest promotional programme. Comparison with a similar installation in Auckland suggests lack of funding or technical competence do not explain the failure in Sri Lanka. The facility in New Zealand, on the roof of Auckland University’s Physics Department, has a slightly smaller budget but has led to modest but useful research and teaching. Lack of financial backing and expertise are often blamed for weak science in developing countries, but examination shows most of these countries have adequately skilled people, and plenty of resources for religion and military. General lack of motivation for science appears to be the principal reason. This lack of interest and highly inefficient bureaucracies are common to scientifically unproductive countries. They mostly lack the cultural and philosphical base of the European Renaissance that motivate the pursuit of modern science, an activity that violates human preferences. There are excellent facilities (ESO, SAAO, Cerro Tololo, and GONG) in some of these same countries, when administered from the West.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. E143-E153 ◽  
Author(s):  
Yannick Fargier ◽  
Raphaël Antoine ◽  
Ludovic Dore ◽  
Sérgio Palma Lopes ◽  
Cyrille Fauchard

The monitoring of underground cavities plays a key role in risk management policies. Mine and underground quarry stakeholders require relevant methodologies and practices to define and assess hazards associated with these structures. To monitor these structures, geophysical methods may offer an interesting compromise among operating cost, invasiveness, and risk assessment reliability. The use of conventional 3D-electric resistivity imaging (ERI) software validated on relatively flat media is not sufficient to efficiently assess complex 3D geometries such as underground mine pillars. We have developed a new approach to evaluate pillar condition by means of a sequential use of two techniques. First, the photogrammetric method yields a detailed 3D model of the pillar geometry from a set of pictures. Second, 3D-ERI is performed based on this suitable geometry. The methodology is tested on a synthetic model to evaluate the effect of various geometry resolutions on the inversion. We also evaluated the combination of the effect of measurement and geometry error. We performed a quasi 3D-ERI survey (three parallel electrode lines) on a real limestone mine pillar to determine the benefits and limitations of the combined procedure. First results revealed the capacity of the photogrammetric methods to obtain a high-precision geometry and its key role during the inversion process. Second results of the real case study revealed that a highly accurate geometry is required to detect accurately conductive anomalies in a complex 3D context.


2011 ◽  
Vol 347-353 ◽  
pp. 1973-1986 ◽  
Author(s):  
Umar Bawah ◽  
Khaled E Addoweesh ◽  
Ali M. Eltamaly

A generalized approach for the economic selection of wind turbine for a given wind regime is proposed in this paper. It draws from the literature and standards being used in the field to arrive at an economic site specific wind turbine based on minimizing the annual cost of energy produced (AEP) while tracking the initial capital cost (ICC) of investment required. It is meant to provide an initial study to guide decision makers who are contemplating using wind energy as a power source to generate electricity in commercial quantity for community usage. It is a general estimation approach which does not require surfing for manufacture prices and wind turbine parameters. The input data consists of site specific wind data, hub height, rotor diameter and turbine power rating. The output gives a range of plots of feasible wind turbine ratings, rotor diameters, rated speed against initial capital cost (ICC) and also cost of energy produced (COE).


Author(s):  
James Towell ◽  
Tom Martinez ◽  
David Hightower ◽  
Richard Maxey ◽  
Gerry Snow ◽  
...  

Power generating stations are under continuous pressure to achieve maximum availability, highest efficiency, and minimum environmental emissions at the lowest possible cost. In recent years, increased fuel flexibility has become more critical financially and operationally than ever before. Colorado Springs Utilities (CSU) has been very progressive in adopting and implementing benchmark technologies and operating strategies to help achieve these goals across their diversified generation portfolio, and in particular at four operating coal units representing 462 megawatts in the system. One key strategy employed at CSU’s Martin Drake Station has been to continuously evaluate and test alternative coal feedstocks which have potential to reduce cost while maintaining capacity, fuel supply security, availability, and efficiency. These tests would not have been possible without the use of Fuel Tech’s Targeted In-Furnace Injection™ (TIFI®) technology to control slagging and fouling, reduce forced outages and load drops, and enhance unit efficiency. The TIFI process involves the use of two different forms of fluid dynamics modeling coupled with a virtual reality engine. Together, these simulation methods create a running duplicate of a given furnace with injection overlays and dosage maps to predict the precise trajectory of an injected chemical, helping to ensure as close to 100% coverage of the targeted zones as possible. With TIFI installed on Units 6 and 7 at Martin Drake Station, the operators were able to blend Powder River Basin coal with design fuel up to double the percentages previously achievable. Using TIFI, the plant was able to maintain full load generation, better control slagging deposits, show improvements in heat absorption, and reduce attemperator spray flows over previous blend trials. Including the cost of the TIFI program, the station has demonstrated a potential annual operating cost reduction approaching $4.9 million. Effective return on TIFI program investment is 4:1.


Author(s):  
James R. Browning ◽  
Jon G. McGowan ◽  
James F. Manwell

Although decreases in the cost of energy from utility scale wind turbine generators has made them competitive with conventional forms of utility power generation, further reductions can increase the presence of wind energy in the global energy mix. The cost of energy from a wind turbine can be reduced by increasing the annual energy production, reducing the initial capital cost of the turbine, or doing both. In this study, the cost of energy is estimated for a theoretical 1.5 MW wind turbine utilizing a continuously variable ratio hydrostatic drive train between the rotor and the generator. The estimated cost of energy is then compared to that of a conventional wind turbine of equivalent rated power. The annual energy production is estimated for the theoretical hydrostatic turbine using an assumed wind speed distribution and a turbine power curve resulting from a steady state performance model of the turbine. The initial capital cost of the turbine is estimated using cost models developed for various components unique to the hydrostatic turbine as well as economic parameters and models developed by the National Renewable Energy Lab (NREL) for their 2004 WindPACT advanced wind turbine drive train study. The resulting cost of energy, along with various performance characteristics of interest, are presented and compared to those of the WindPACT baseline turbine intended to represent a conventional utility scale wind turbine.


2019 ◽  
Author(s):  
Scott Strobel ◽  
Lucille Knowles ◽  
Nitin Nitin ◽  
Herbert Scher ◽  
Tina Jeoh

<div>The food, chemical, and biotechnology industries offer many potential applications for calcium alginate microencapsulation, but this technique is largely confined to the laboratory bench due to scalability challenges. Scaling up the traditional external gelation method requires several costly unit operations. Alternatively, a consolidated process accomplishes alginate cross-linking in situ during spray-drying to form cross-linked alginate microcapsules (‘the CLAMs process’). This work examined the process economics of these two microencapsulation processes through technoeconomic analysis. Parallel batch process models were constructed in SuperPro Designer, initially for encapsulating emulsified fish oil. At all production scales examined, the capital investment and annual operating cost were lower for the CLAMs process. Modifying the external gelation process marginally improved the process economics, but costs remained elevated. The CLAMs process’ economic advantage stemmed from reducing the number of unit procedures, which lowered the equipment purchase cost and the dependent components of capital investment and annual operating cost. Upon modifying the models for microencapsulating hydrophilic cargo (e.g. enzymes, vitamins, microbial concentrates), the CLAMs process remained favorable at all cargo material costs and cargo loadings examined. This work demonstrates the utility of technoeconomic analysis for evaluating microencapsulation processes and may justify applying the CLAMs process at the industrial scale. </div>


TAPPI Journal ◽  
2021 ◽  
Vol 20 (7) ◽  
pp. 467-478
Author(s):  
DIEGO F. RIVERA ◽  
MAX KLEIMAN-LYNCH ◽  
BRENT D. KELLER ◽  
STEPHEN F. FRAYNE

Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization. This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.


Author(s):  
Scott Strobel ◽  
Lucille Knowles ◽  
Nitin Nitin ◽  
Herbert Scher ◽  
Tina Jeoh

<div>The food, chemical, and biotechnology industries offer many potential applications for calcium alginate microencapsulation, but this technique is largely confined to the laboratory bench due to scalability challenges. Scaling up the traditional external gelation method requires several costly unit operations. Alternatively, a consolidated process accomplishes alginate cross-linking in situ during spray-drying to form cross-linked alginate microcapsules (‘the CLAMs process’). This work examined the process economics of these two microencapsulation processes through technoeconomic analysis. Parallel batch process models were constructed in SuperPro Designer, initially for encapsulating emulsified fish oil. At all production scales examined, the capital investment and annual operating cost were lower for the CLAMs process. Modifying the external gelation process marginally improved the process economics, but costs remained elevated. The CLAMs process’ economic advantage stemmed from reducing the number of unit procedures, which lowered the equipment purchase cost and the dependent components of capital investment and annual operating cost. Upon modifying the models for microencapsulating hydrophilic cargo (e.g. enzymes, vitamins, microbial concentrates), the CLAMs process remained favorable at all cargo material costs and cargo loadings examined. This work demonstrates the utility of technoeconomic analysis for evaluating microencapsulation processes and may justify applying the CLAMs process at the industrial scale. </div>


Sign in / Sign up

Export Citation Format

Share Document