scholarly journals Influence of grain boundaries on the electrical transport properties of polycrystalline Si films. Progress report

1977 ◽  
Author(s):  
D. Ast
2015 ◽  
Vol 1107 ◽  
pp. 261-266
Author(s):  
Kean Pah Lim ◽  
Kuen Hou Cheong ◽  
Abdul Halim Shaari ◽  
Mansor Hashim ◽  
Albert Han Ming Gan ◽  
...  

In this paper, nanosized La0.85Na0.15MnO3 (LNMO) has been synthesized via sol-gel method by involving two major steps, first the complexation of citric acid (CA) with metal ions (MI) and second the polyesterification between CA and ethylene glycol (EG). The effect of molar ratio CA:MI varying from 2-4 on structure, microstructure and electrical transport properties of LNMO have been investigated by constant the amount of EG. All samples show single perovskite phase with hexagonal structure and space group R3c after sintering at 800°C for 10h. Sample of molar ratio 2.5 is observed to possess smallest grain sizes which yield high resistivity value compared with others, is suggested to originate from the increase of tunneling barriers (grain boundaries). The large low field magnetoresistance (LFMR) of about ~ -16% at 0.1T and low temperature confirmed the important role of grain boundaries in the nanosized LNMO.


2012 ◽  
Vol 208 ◽  
pp. 4-7 ◽  
Author(s):  
Z.H. Cui ◽  
G. Gregori ◽  
A.L. Ding ◽  
X.X. Guo ◽  
J. Maier

1996 ◽  
Vol 68 (1) ◽  
pp. 120-122 ◽  
Author(s):  
D. G. Steel ◽  
J. D. Hettinger ◽  
F. Yuan ◽  
D. J. Miller ◽  
K. E. Gray ◽  
...  

2021 ◽  
Author(s):  
Dongha Shin ◽  
Hwa Rang Kim ◽  
Byung Hee Hong

Since of its first discovery, graphene has attracted much attention because of the unique electrical transport properties that can be applied to high-performance field-effect transistor (FET). However, mounting chemical functionalities...


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 746
Author(s):  
Meiling Hong ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Xinyu Zhang

A series of investigations on the structural, vibrational, and electrical transport characterizations for Ga2Se3 were conducted up to 40.2 GPa under different hydrostatic environments by virtue of Raman scattering, electrical conductivity, high-resolution transmission electron microscopy, and atomic force microscopy. Upon compression, Ga2Se3 underwent a phase transformation from the zinc-blende to NaCl-type structure at 10.6 GPa under non-hydrostatic conditions, which was manifested by the disappearance of an A mode and the noticeable discontinuities in the pressure-dependent Raman full width at half maximum (FWHMs) and electrical conductivity. Further increasing the pressure to 18.8 GPa, the semiconductor-to-metal phase transition occurred in Ga2Se3, which was evidenced by the high-pressure variable-temperature electrical conductivity measurements. However, the higher structural transition pressure point of 13.2 GPa was detected for Ga2Se3 under hydrostatic conditions, which was possibly related to the protective influence of the pressure medium. Upon decompression, the phase transformation and metallization were found to be reversible but existed in the large pressure hysteresis effect under different hydrostatic environments. Systematic research on the high-pressure structural and electrical transport properties for Ga2Se3 would be helpful to further explore the crystal structure evolution and electrical transport properties for other A2B3-type compounds.


Sign in / Sign up

Export Citation Format

Share Document