scholarly journals Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

2010 ◽  
Author(s):  
Ya Wang
Author(s):  
Hamid Ghaznavi ◽  
Farideh Elahimanesh ◽  
Jamil Abdolmohammadi ◽  
Meysam Mirzaie ◽  
Sadegh Ghaderi

Abstract Background: The Coronavirus disease 2019 (COVID-19) is spreading rapidly throughout the world. Lung is the primary organ which the COVID-19 virus affects and leads to pneumonia, an acute respiratory distress syndrome. COVID-19 infects the lower respiratory system, and the lung’s response to this infection is recruiting macrophages and monocytes leading to inflammation, this response causes widespread damage to the lung’s airways. Aim: The purpose of this study is to review studies of using low-dose radiation as a treatment for the inflammation of the tissue and pneumonia resulting from COVID-19. These studies were compared with the risk of developing lung cancer during performed dose for the treatment of COVID-19 in radiation therapy. Materials and methods: Our study focused on in vitro, in vivo and clinical reports of using low-dose radiation for the treatment of inflammation, pneumonia and COVID-19. The risk of lung cancer resulting from suggested dose in these studies was also evaluated. Conclusion: From the review of articles, we have found that low-dose radiation can lead to improvement in inflammation in different line cells and animals; in addition, it has been effective in treating inflammation and pneumonia caused by COVID-19 in human up to 80%. Since suggested doses do not remarkably increase the lung cancer risk, low-dose radiation can be an adjuvant treatment for COVID-19 patients.


Author(s):  
Virginia Cruz‐Vallejo ◽  
Rocío Ortíz‐Muñiz ◽  
Teresita Vallarino‐Kelly ◽  
Elsa Cervantes‐Ríos ◽  
Pedro Morales‐Ramírez

Author(s):  
Mingzhu Chen ◽  
Ziqi Wang ◽  
Weilong Suo ◽  
Zhirong Bao ◽  
Hong Quan

Higher doses of radiotherapy (RT) are associated with resistance induction, therefore highly selective and controllable radiosensitizers are urgently needed. To address this issue, we developed a FeGA-based injectable hydrogel system (FH) that can be used in combination with low-dose radiation. Our FH can deliver FeGA directly to the tumor site via intratumoral injection, where it is a reservoir-based system to conserve FeGA. The photothermal properties of FeGA steadily dissolve FH under laser irradiation, and, simultaneously, FeGA reacts with a large amount of H2O2 in the cell to produce OH (Fenton reaction) which is highly toxic to mitochondria, rendering the cell inactive and reducing radiotherapy resistance. In vivo and in vitro studies suggest that combining the FH and NIR irradiation with RT (2Gy) can significantly reduce tumor proliferation without side effects such as inflammation. To conclude, this is the first study to achieve combined chemodynamic therapy (CDT) and photothermal therapy (PTT) in situ treatment, and the best therapeutic effect can be obtained with a low-dose radiation combination, thus expanding the prospects of FeGA-based tumor therapy.


2008 ◽  
Vol 49 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Hongyu JIANG ◽  
Wei LI ◽  
Xiuyi LI ◽  
Lu CAI ◽  
Guanjun WANG

Dose-Response ◽  
2007 ◽  
Vol 5 (4) ◽  
pp. dose-response.0 ◽  
Author(s):  
Pamela J. Sykes ◽  
Tanya K. Day

Cancer results from multiple changes in gene expression that can occur both genetically and epigenetically. High doses of radiation can lead to mutations and cancer. At high doses the number of mutations caused by radiation is essentially linear with dose. Low dose radiation induced protective responses observed for cancer in vivo and cellular transformation in vitro would predict that hormetic responses would also be observed in mutation assays. Although there are a large number of different mutation assays available, very few are able to detect changes in mutation frequency in response to very low doses of DNA damaging agents. The easiest way to cope with this lack of data in the low dose range is to invoke a linear-no-threshold model for risk assessment. The reasons for the lack of data are discussed. In order to identify hormetic mutation responses, assays need to have a spontaneous frequency that is high enough to enable a reduction below spontaneous frequency to be detected in a feasible number of scored cells and also need to be able to identify both genetic and epigenetic changes. The pKZ1 chromosomal inversion assay fits the criteria for detecting hormetic responses to low dose radiation.


2002 ◽  
Vol 21 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L E Feinendegen

This review first summarizes experimental data on biological effects of different concentrations of ROS in mammalian cells and on their potential role in modifying cell responses to toxic agents. It then attempts to link the role of steadily produced metabolic ROS at various concentrations in mammalian cells to that of environmentally derived ROS bursts from exposure to ionizing radiation. The ROS from both sources are known to both cause biological damage and change cellular signaling, depending on their concentration at a given time. At low concentrations signaling effects of ROS appear to protect cellular survival and dominate over damage, and the reverse occurs at high ROS concentrations. Background radiation generates suprabasal ROS bursts along charged particle tracks several times a year in each nanogram of tissue, i.e., average mass of a mammalian cell. For instance, a burst of about 200 ROS occurs within less than a microsecond from low-LET irradiation such as X-rays along the track of a Compton electron (about 6 keV, ranging about 1 μm). One such track per nanogram tissue gives about 1 mGy to this mass. The number of instantaneous ROS per burst along the track of a 4-meV ¬-particle in 1 ng tissue reaches some 70000. The sizes, types and sites of these bursts, and the time intervals between them directly in and around cells appear essential for understanding low-dose and low dose-rate effects on top of effects from endogenous ROS. At background and low-dose radiation exposure, a major role of ROS bursts along particle tracks focuses on ROS-induced apoptosis of damage-carrying cells, and also on prevention and removal of DNA damage from endogenous sources by way of temporarily protective, i.e., adaptive, cellular responses. A conclusion is to consider low-dose radiation exposure as a provider of physiological mechanisms for tissue homoeostasis.


2009 ◽  
Vol 19 (6) ◽  
pp. 1553-1559 ◽  
Author(s):  
C. Thomas ◽  
O. Patschan ◽  
D. Ketelsen ◽  
I. Tsiflikas ◽  
A. Reimann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document