scholarly journals 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

2010 ◽  
Author(s):  
H. C. Maru ◽  
S. C. Singhal ◽  
C. Stone ◽  
D. Wheeler
Author(s):  
Manuel-Angel Gonzalez-Chapa ◽  
Jose-Ramon Vega-Galaz

Combined Heat and Power systems have been used all around the world due to their effective and viable way of transforming energy from fossil fuel. Indeed, the advantage of lower greenhouse gas emissions compared to those obtained in conventional power or conventional heat generation systems have been an important factor giving CHP systems an advantage over these conventional ones. Certainly CHP has been, and continues to be, a good practice while renewable technologies become more economically. While these technologies emerge it is important to continue minimizing these greenhouse gas emissions from conventional and CHP units as much as possible. This paper deals with the fuel optimization of power, heat and CHP systems including emissions and ambient conditions constraints. Ambient conditions variations are evaluated before solving the optimization and then introduced to the problem to consider their effects.


2022 ◽  
Vol 51 ◽  
pp. 101944
Author(s):  
Oon Erixno ◽  
Nasrudin Abd Rahim ◽  
Farah Ramadhani ◽  
Noriah Nor Adzman

2019 ◽  
Vol 149 ◽  
pp. 1359-1369 ◽  
Author(s):  
Majid Majidi ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 1119-1127 ◽  
Author(s):  
Manijeh Alipour ◽  
Kazem Zare ◽  
Heresh Seyedi ◽  
Mehdi Jalali

2015 ◽  
Vol 293 ◽  
pp. 312-328 ◽  
Author(s):  
Harikishan R. Ellamla ◽  
Iain Staffell ◽  
Piotr Bujlo ◽  
Bruno G. Pollet ◽  
Sivakumar Pasupathi

2020 ◽  
Vol 197 ◽  
pp. 01002
Author(s):  
Alberto Fichera ◽  
Arturo Pagano ◽  
Rosaria Volpe

Combined heat and power systems are widely recognized as a cost-effective solution for the achievement of sustainable and energy efficiency goals. During the last decade, cogeneration systems have been extensively studied from both the technological and operational viewpoints. However, the operation of a cogeneration system is a topic still worth of investigation. In fact, along with the determination of the optimal configurations of the combined heat and power systems, it is likewise fundamental to increase the awareness on the design and cost parameters affecting the operation of cogeneration systems, especially if considering the micro-grid in which they are inserted. In this direction, this paper proposed a mixed integer linear programming model with the objective of minimizing the total operational costs of the micro-grid. Different scenarios include the satisfaction of the cooling demands of the micro-grid as well as the opportuneness to include a heat storage. The influence of the main design and cost parameters on the operation of the micro-grid has been assessed by adopting the statistical tool ANOVA (Analysis Of Variance). The model and the experimental application of the ANOVA have been applied to a micro-grid serving a hospital located in the South of Italy.


Sign in / Sign up

Export Citation Format

Share Document