In Vivo Delivery of Morpholino Oligos by Cell-Penetrating Peptides

2013 ◽  
Vol 19 (16) ◽  
pp. 2963-2969 ◽  
Author(s):  
Hong M. Moulton
Peptides ◽  
2017 ◽  
Vol 87 ◽  
pp. 50-63 ◽  
Author(s):  
Azam Bolhassani ◽  
Behnaz Sadat Jafarzade ◽  
Golnaz Mardani

2018 ◽  
Vol 9 (15) ◽  
pp. 3820-3827 ◽  
Author(s):  
Soonsil Hyun ◽  
Yoonhwa Choi ◽  
Ha Neul Lee ◽  
Changki Lee ◽  
Donghoon Oh ◽  
...  

A hydrocarbon stapled peptide, LKH-stEK, promotes delivery of nanomolar siRNAs leading to efficient gene silencing in mouse skin.


2008 ◽  
Vol 14 (24) ◽  
pp. 2415-2427 ◽  
Author(s):  
Veerle Kersemans ◽  
Ken Kersemans ◽  
Bart Cornelissen

2005 ◽  
Vol 390 (2) ◽  
pp. 407-418 ◽  
Author(s):  
Catherine de Coupade ◽  
Antonio Fittipaldi ◽  
Vanessa Chagnas ◽  
Matthieu Michel ◽  
Sophie Carlier ◽  
...  

Short peptide sequences that are able to transport molecules across the cell membrane have been developed as tools for intracellular delivery of therapeutic molecules. This work describes a novel family of cell-penetrating peptides named Vectocell® peptides [also termed DPVs (Diatos peptide vectors)]. These peptides, originating from human heparin binding proteins and/or anti-DNA antibodies, once conjugated to a therapeutic molecule, can deliver the molecule to either the cytoplasm or the nucleus of mammalian cells. Vectocell® peptides can drive intracellular delivery of molecules of varying molecular mass, including full-length active immunoglobulins, with efficiency often greater than that of the well-characterized cell-penetrating peptide Tat. The internalization of Vectocell® peptides has been demonstrated to occur in both adherent and suspension cell lines as well as in primary cells through an energy-dependent endocytosis process, involving cell-membrane lipid rafts. This endocytosis occurs after binding of the cell-penetrating peptides to extracellular heparan sulphate proteoglycans, except for one particular peptide (DPV1047) that partially originates from an anti-DNA antibody and is internalized in a caveolar independent manner. These new therapeutic tools are currently being developed for intracellular delivery of a number of active molecules and their potentiality for in vivo transduction investigated.


2020 ◽  
Vol 11 ◽  
pp. 101-123 ◽  
Author(s):  
Ivana Ruseska ◽  
Andreas Zimmer

In today’s modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.


Sign in / Sign up

Export Citation Format

Share Document