Preparation and Characterization of a Novel Room Temperature Dicationic Ionic Liquid and its Application in the Synthesis of Xanthenediones Under Solvent-Free Conditions

2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.

2010 ◽  
Vol 88 (2) ◽  
pp. 150-154 ◽  
Author(s):  
Sudarshan Das ◽  
Matiur Rahman ◽  
Dhiman Kundu ◽  
Adinath Majee ◽  
Alakananda Hajra

A sulfonic-acid-functionalized ionic liquid is used as a Brønsted acid catalyst for the efficient synthesis of indole derivatives in good-to-high yields at room temperature under solvent-free conditions. The catalyst can be reused for ten consecutive runs without significant loss of activity.


2017 ◽  
Vol 25 (2) ◽  
pp. 163-178 ◽  
Author(s):  
Reza Heydari ◽  
Rohollah Rahimi ◽  
Mehrnoosh Kangani ◽  
Afshin Yazdani-Elah-Abadi ◽  
Mojtaba Lashkari

Abstract The potassium carbonate was applied as a green and efficient catalyst for the one-pot synthesis of pyran annulated heterocyclic systems, via the condensation between aromatic aldehydes, malononitrile and dimedone/1-naphtole by a grinding method at room temperature and solvent-free conditions. Short reaction times, environmentally friendly procedure and excellent yields are the main advantages of this procedure which makes it more economic than other environmentally synthetic methods.


2017 ◽  
Vol 72 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Adel A. Marzouk ◽  
Antar A. Abdelhamid ◽  
Shaaban K. Mohamed ◽  
Jim Simpson

AbstractMorpholinium hydrogen sulfate as an ionic liquid was employed as a catalyst for the synthesis of a biologically active series of multi-substituted imidazoles by a four-component reaction involving the combination of benzil with different aromatic aldehydes, ammonium acetate, and 1-amino-2-propanol under solvent-free conditions. The key advantages of this method are shorter reaction times, very high yield, and ease of processing. Furthermore, the resulting products can be purified by a non-chromatographic method and the ionic liquid catalyst is reusable. All of these novel compounds have been fully characterized from spectral data. The X-ray crystal structures of two representative molecules are also detailed.


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


2020 ◽  
Vol 23 (2) ◽  
pp. 157-167
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed. Material and Method:: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points. Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused. Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.


2012 ◽  
Vol 90 (3) ◽  
pp. 290-297 ◽  
Author(s):  
Manoj Kumar Muthyala ◽  
Bhupender S Chhikara ◽  
Keykavous Parang ◽  
Anil Kumar

A novel ionic-liquid-supported 1,5,7-triazabicyclo[4.4.0]dec-5-ene (IL–TBD) was synthesized and investigated for its ability to act as an active organocatalyst in the Michael addition of active methylene compounds and thiophenols to chalcones under solvent-free conditions. The IL–TBD afforded Michael addition products in excellent yields (82%–94%) at room temperature, and it was simply recycled and reused at least five times without significant loss of catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document