The Implications of Autophagy in Alzheimer’s Disease

2018 ◽  
Vol 15 (14) ◽  
pp. 1283-1296 ◽  
Author(s):  
Tadanori Hamano ◽  
Kouji Hayashi ◽  
Norimichi Shirafuji ◽  
Yasunari Nakamoto

The pathogenic mechanisms of Alzheimer’s Disease (AD) involve the deposition of abnormally misfolded proteins, amyloid β protein (Aβ) and tau protein. Aβ comprises senile plaques, and tau aggregates form Neurofibrillary Tangles (NFTs), both of which are hallmarks of AD. Autophagy is the main conserved pathway for the degeneration of aggregated proteins, Aβ, tau and dysfunctional organelles in the cell. Many animal model studies have demonstrated that autophagy normally functions as the protective factor against AD progression associated with intracytoplasmic toxic Aβ and tau aggregates. The upregulation of autophagy can also be favorable in AD treatment. An improved understanding of the signaling pathways that regulate autophagy is critical to developing AD treatments. The cellular and molecular machineries of autophagy, their function in the pathogenesis of AD, and current drug discovery strategies will be discussed in this review.

2021 ◽  
pp. 1-21
Author(s):  
Xi-Jun Song ◽  
He-Yan Zhou ◽  
Yu-Ying Sun ◽  
Han-Chang Huang

Alzheimer’s disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.


1995 ◽  
Vol 1 (4) ◽  
pp. 365-369 ◽  
Author(s):  
M.A. Smith ◽  
S.L. Siedlak ◽  
P.L. Richey ◽  
P. Mulvihill ◽  
J. Ghiso ◽  
...  

Author(s):  
Dennis J. Selkoe ◽  
Christian Haass ◽  
Michael Schlossmacher ◽  
Albert Hung ◽  
Martin Citron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document