Protein-Tyrosine Phosphatase 1B as a Potential Drug Target for Obesity

2003 ◽  
Vol 3 (4) ◽  
pp. 299-304 ◽  
Author(s):  
Shrikrishna Dadke ◽  
Jonathan Chernoff
2014 ◽  
Author(s):  
◽  
Andrea Hicks Cummings

Exo-affinity labeling agents are compounds that achieve selectivity by modifying non-catalytic residues in a protein. They have been utilized as tools in molecular biology and to make successful drugs for protein targets. Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target for type II diabetes, obesity and cancer. However, no compounds have been FDA approved for PTP1B due to selectivity and bioavailability issues with traditional compounds. We propose that exo-affinity labeling agents can be used to achieve selectivity in PTP1B. In this work we have designed, synthesized, and characterized the first exo-affinity for PTP1B. Using this work we can design better exo-affinity labeling agents that can be selective for PTP1B. This may have implications on drug design and general knowledge of protein signaling pathways.


2018 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
R.M. Perez-Gutierrez

Methanol extract from Lippia graveolens (Mexican oregano) was studied in order to identify inhibitory bioactives for protein tyrosine phosphatase 1B (PTP1B). Known flavone as lutein (1), and another flavone glycoside such as lutein-7-o-glucoside (2), 6-hydroxy-lutein-7-ohexoside (3) and lutein-7-o-ramnoide (4) were isolated from methanol extract of aerial parts of the Lippia graveolens. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR, MS and compared with spectroscopic data previously reported. These flavones were evaluated for PTP1B inhibitory activity. Among them, compounds 1 and 3 displayed potential inhibitory activity against PTP1B with IC50 values of 7.01 ± 1.25 μg/ml and 18.4 μg/ml, respectively. In addition, compound 2 and 4 showed moderate inhibitory activity with an IC50 value of 23.8 ± 6.21 and 67.8 ± 5.80 μg/ml respectively. Among the four compounds, luteolin was found to be the most potent PTP1B inhibitor compared to the positive control ursolic acid, with an IC50 value of 8.12 ± 1.06 μg/ml. These results indicate that flavonoids constituents contained in Lippia graveolens can be considered as a natural source for the treatment of type 2 diabetes.


2020 ◽  
Vol 20 (11) ◽  
pp. 1017-1030
Author(s):  
Haonan Zhang ◽  
Zhengquan Gao ◽  
Chunxiao Meng ◽  
Xiangqian Li ◽  
Dayong Shi

Protein tyrosine phosphatase 2 (SHP-2) has long been proposed as a cancer drug target. Several small-molecule compounds with different mechanisms of SHP-2 inhibition have been reported, but none are commercially available. Pool selectivity over protein tyrosine phosphatase 1 (SHP-1) and a lack of cellular activity have hindered the development of selective SHP-2 inhibitors. In this review, we describe the binding modes of existing inhibitors and SHP-2 binding sites, summarize the characteristics of the sites involved in selectivity, and identify the suitable groups for interaction with the binding sites.


Author(s):  
Jiajia Zhang ◽  
Ning Wu ◽  
Dayong Shi

Background: The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. Methodology: We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. Results: We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. Conclusion: There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.


Sign in / Sign up

Export Citation Format

Share Document