scholarly journals The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection

2020 ◽  
Vol 18 (11) ◽  
pp. 1076-1091
Author(s):  
Rodrigo A. Quntanilla ◽  
Carola Tapia-Monsalves

: Accumulative evidence has shown that mitochondrial dysfunction plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial impairment actively contributes to the synaptic and cognitive failure that characterizes AD. The presence of soluble pathological forms of tau like hyperphosphorylated at Ser396 and Ser404 and cleaved at Asp421 by caspase 3, negatively impacts mitochondrial bioenergetics, transport, and morphology in neurons. These adverse effects against mitochondria health will contribute to the synaptic impairment and cognitive decline in AD. Current studies suggest that mitochondrial failure induced by pathological tau forms is likely the result of the opening of the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial mega-channel that is activated by increases in calcium and is associated with mitochondrial stress and apoptosis. This structure is composed of different proteins, where Ciclophilin D (CypD) is considered to be the primary mediator of mPTP activation. Also, new studies suggest that mPTP contributes to Aβ pathology and oxidative stress in AD. : Further, inhibition of mPTP through the reduction of CypD expression prevents cognitive and synaptic impairment in AD mouse models. More importantly, tau protein contributes to the physiological regulation of mitochondria through the opening/interaction with mPTP in hippocampal neurons. Therefore, in this paper, we will discuss evidence that suggests an important role of pathological forms of tau against mitochondrial health. Also, we will discuss the possible role of mPTP in the mitochondrial impairment produced by the presence of tau pathology and its impact on synaptic function present in AD.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sumeet S Vaikunth ◽  
Karl T Weber ◽  
Syamal K Bhattacharya

Introduction: Isoproterenol-induced acute stressor state simulates injury from burns or trauma, and results in Ca 2+ overloading and oxidative stress in diverse tissues, including cardiac myocytes and their subsarcolemmal mitochondria (SSM), overwhelming endogenous Zn 2+ -based antioxidant defenses. We hypothesized that pretreatment with nebivolol (Nebi), having dual beta-1 antagonistic and novel beta-3 receptor agonistic properties, would prevent Ca 2+ overloading and oxidative stress and upregulate Zn 2+ -based antioxidant defenses, thus enhancing its overall cardioprotective potential in acute stressor state. Methods: Eight-week-old male Sprague-Dawley rats received a single subcutaneous dose of isoproterenol (1 mg/kg) and compared to those treated with Nebi (10 mg/kg by gavage) for 10 days prior to isoproterenol. SSM were harvested from cardiac tissue at sacrifice. Total Ca 2+ , Zn 2+ and 8-isoprostane levels in tissue, and mitochondrial permeability transition pore (mPTP) opening, free [Ca 2+ ] m and H 2 O 2 production in SSM were monitored. Untreated, age-/sex-matched rats served as controls; each group had six rats and data shown as mean±SEM. Results: Compared to controls, isoproterenol rats revealed: (1) Significantly (*p<0.05) increased cardiac tissue Ca 2+ (8.2±0.8 vs. 13.7±1.0*, nEq/mg fat-free dry tissue (FFDT)), which was abrogated ( # p<0.05) by Nebi (8.9±0.4 # ); (2) Reduced cardiac Zn 2+ (82.8±2.4 vs. 78.5±1.0*, ng/mg FFDT), but restored by Nebi (82.4±0.6 # ); (3) Two-fold rise in cardiac 8-isoprostane (111.4±13.7 vs. 232.1±17.2*, pmoles/mg protein), and negated by Nebi (122.3+14.5 # ); (4) Greater opening propensity for mPTP that diminished by Nebi; (5) Elevated [Ca 2+ ] m (88.8±2.5 vs. 161.5±1.0*, nM), but normalized by Nebi (93.3±2.7 # ); and (6) Increased H 2 O 2 production by SSM (97.4±5.3 vs. 142.8±7.0*, pmoles/mg protein/min), and nullified by Nebi (106.8±9.0 # ). Conclusions : Cardioprotection conferred by Nebi, a unique beta-blocker, prevented Ca 2+ overloading and oxidative stress in cardiac tissue and SSM, while simultaneously augmenting antioxidant capacity and promoting mPTP stability. Therapeutic potential of Nebi in patients with acute stressor states remains a provocative possibility that deserves to be explored.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Giovanni Fajardo ◽  
Mingming Zhao ◽  
Gerald Berry ◽  
Daria Mochly-Rosen ◽  
Daniel Bernstein

β2-adrenergic receptors (β2-ARs) modulate cardioprotection through crosstalk with multiple pathways. We have previously shown that β2-ARs are cardioprotective during acute exposure to Doxorubicin (DOX). DOX cardiotoxicity is mediated through a Ca 2+ -dependent opening of the mitochondrial permeability transition pore (MPT) and mitochondrial dysfunction, however the upstream signals linking cell surface receptors and the MPT are not clear. The purpose of this study was to assess crosstalk between β2-AR signaling and mitochondrial function in DOX toxicity. DOX 10 mg/kg was administered to β2−/− and WT mice. Whereas there was no mortality in WT, 85% of β2−/− mice died within 30 min (n=20). Pro- and anti-survival kinases were assessed by immunobloting. At baseline, β2−/− showed normal levels of ϵPKC, but a 16% increase in δPKC compared to WT (p<0.05). After DOX, β2−/− showed a 64% decrease in ϵPKC (p<0.01) and 22% increase in δPKC (p<0.01). The ϵPKC activator ΨϵRACK decreased mortality by 40% in β2−/− mice receiving DOX; there was no improvement in survival with the δPKC inhibitor δV1–1. After DOX, AKT activity was decreased by 76% (p<0.01) in β2−/− but not in WT. The α1-AR blocker prazosin, inhibiting signaling through Gαq, restored AKT activity and reduced DOX mortality by 47%. We next assessed the role of mitochondrial dysfunction in β2−/− mediated DOX toxicity. DOX treated β2−/− mice, but not WT, show marked vacuolization of mitochondrial cristae. Complex I activity decreased 31% in β2−/− mice with DOX; but not in WT. Baseline rate of Ca2+ release and peak [Ca2+]i ratio were increased 85% and 17% respectively in β2−/− myocytes compared to WT. Verapamil decreased mortality by 27% in DOX treated β2−/− mice. Cyclosporine, a blocker of both MPT and calcineurin, reduced DOX mortality to 50%. In contrast, FK506, a blocker of calcineurin but not the MPT, did not reduce DOX mortality. Cyclosporine prevented the decrease in AKT activity in β2−/− whereas FK506 did not. These findings suggest that β2-ARs modulate pro-survival kinases and attenuate mitochondrial dysfunction during DOX cardiotoxicity; absence of β2-ARs enhances DOX toxicity via negative regulation of survival kinases and enhancement of intracellular Ca2+, sensitizing mitochondria to opening of the MPT.


2015 ◽  
Vol 43 (4) ◽  
pp. 553-558 ◽  
Author(s):  
Ryan J. Middleton ◽  
Guo-Jun Liu ◽  
Richard B. Banati

The highly conserved 18-kDa translocator protein (TSPO) or peripheral benzodiazepine receptor (PBR), is being investigated as a diagnostic and therapeutic target for disease conditions ranging from inflammation to neurodegeneration and behavioural illnesses. Many functions have been attributed to TSPO/PBR including a role in the mitochondrial permeability transition pore (MPTP), steroidogenesis and energy metabolism. In this review, we detail the recent developments in determining the physiological role of TSPO/PBR, specifically based on data obtained from the recently generated Tspo knockout mouse models. In addition to defining the role of TSPO/PBR, we also describe the value of Tspo knockout mice in determining the selectivity, specificity and presence of any off-target effects of TSPO/PBR ligands.


Sign in / Sign up

Export Citation Format

Share Document