Induction of Protective Immunity Against Microbial Challenge by Targeting Antigens Expressed by Probiotic Bacteria to Mucosal Dendritic Cells

2010 ◽  
Vol 8 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Mansour Mohamadzadeh
2010 ◽  
Vol 135 ◽  
pp. S32
Author(s):  
Patricia Taylor ◽  
Gary Koski ◽  
Erin Bailey ◽  
Daniel Zimmerman ◽  
Ken S. Rosenthal

2016 ◽  
Vol 137 (1) ◽  
pp. 214-222.e2 ◽  
Author(s):  
Nicolas Rochereau ◽  
Vincent Pavot ◽  
Bernard Verrier ◽  
Fabienne Jospin ◽  
Agathe Ensinas ◽  
...  

Author(s):  
Filiz Dermicik ◽  
Susanna Lopez Kostka ◽  
Stefan Tenzer ◽  
Ari Waisman ◽  
Esther Von Stebut

Abstract In cutaneous leishmaniasis, infection of dendritic cells (DC) is essential for generation of T cell-dependent protective immunity. DC acquires Leishmania major through Fc receptor (FcR)-mediated uptake of complexes comprising antibodies bound to parasites. We now assessed the development of the initial B cell and DC response to the parasite itself and if natural IgG play a role. L. major parasites display large numbers of phospholipids on their surface. Parasites were opsonized with normal mouse serum (NMS), or serum containing anti-phospholipid IgG (PL). We found that L. major bound to PL which significantly enhanced parasite phagocytosis by DC as compared to NMS. Similar results were obtained with cross-reactive human PL antibodies using myeloid primary human DC. In addition, mice infected with PL-opsonized parasites showed significantly improved disease outcome compared to mice infected with NMS-opsonized parasites. Finally, IgMi mice, which produce membrane-bound IgM only and no secreted antibodies, displayed increased susceptibility to infection as compared to wild types. Interestingly, once NMS was administered to IgMi mice, their phenotype was normalized to that of wild types. Upon incubation with IgG-opsonized parasite (IgG derived from infected mice or using PL antibodies), also the IgMi mice were able to show superior immunity. Our findings suggest that “natural” cross-reactive antibodies (e.g., anti-PL Ab) in NMS bind to pathogens to facilitate phagocytosis, which leads to induction of protective immunity via preferential DC infection. Prior L. major-specific B cell-priming does not seem to be absolutely required to facilitate clearance of this important human pathogen in vivo. Key messages We found that anti-phospholipid (anti-PL) antibodies enhance phagocytosis of L. major by DCs. We also found that normal mouse sera have natural antibodies that can imitate PL specific antibodies. Using different genetically modified mice, we found that these antibodies can be IgG, not only IgM.


2005 ◽  
Vol 73 (3) ◽  
pp. 1568-1577 ◽  
Author(s):  
Jose Rey-Ladino ◽  
Kasra M. Koochesfahani ◽  
Michelle L. Zaharik ◽  
Caixia Shen ◽  
Robert C. Brunham

ABSTRACT The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4+ T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4+ T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.


2003 ◽  
Vol 104 (s49) ◽  
pp. 53P-53P
Author(s):  
A.L. Hart ◽  
M.A. Kamm ◽  
S.C. Knight ◽  
A. J. Stagg

Sign in / Sign up

Export Citation Format

Share Document