Pyridine/pyrimidine Substituted Imidazol-5-one Analogs as HIV-1 RT Inhibitors: Design, Synthesis, Docking and Molecular Dynamic Simulation Studies

2021 ◽  
Vol 19 ◽  
Author(s):  
Santosh Mokale ◽  
Deepak Lokwani ◽  
Abdul Mujaheed

Background: This paper reports the synthesis, Non-nucleoside reverse transcriptase inhibitory (NNRTIs) activity and computational studies of 2-((4-chloro-2-subtitutedphenoxy)methyl)-4-(furan-2-ylmethylene)-1-substituted Pyridine/-pyrimidine-1H-imidazol-5(4H)-ones. Methods: The imidazol-5-one analogs were synthesized by conventional method and characterized by FT-IR, NMR and mass spectral data. All compounds were evaluated for in-vitro NNRTI activity by using reverse transcriptase (RT) assay kit (Roche). The in-silico docking studies were conducted on RT enzyme to investigate binding site interactions of synthesized compounds. The MM-GBSA method was also used to calculate the binding free energy between the inhibitors and RT enzyme. The MD simulation was further performed for the apo form of the RT enzyme and docked complex of compound A6-RT enzyme to better understand the stability of the protein-ligand complex. Results: The bioactivity analysis revealed that most of the synthesized compounds showed significant inhibitory activity against RT enzyme and the IC50 value was found to be in the range of 1.76-3.88 μM. The computational studies suggest that the docked compounds form the H-bonding with amino acid residue Lys101 and hydrophobic interactions with amino acid residues Tyr188, Tyr181, Trp229, and Tyr318, which act as the primary driving forces for protein-ligand interaction. Conclusion: The reported imidazol-5-one analogs can act as lead for further development of prospective RT inhibitors.

Author(s):  
Ameeruddin Nusrath Unissa ◽  
Luke Elizabeth Hanna

Reverse transcriptase (RT) is a vital enzyme in the process of transcription of HIV-1. The nucleoside analogues of RT inhibitors (NRTIs) act by substrate competition and chain termination as they resemble a nucleotide. To understand the basis of RT resistance in HIV-1, in this chapter, one of the clinically essential mutants Q151M of RT which exhibits multi-resistance to many NRTIs was modeled and docked with NRTIs in comparison to wild type (WT). The results of docking indicate that the WT showed high affinity with all inhibitors compared to the mutant (MT). It can be suggested that the high affinity in WT could be attributed to the favorable interactions with all inhibitors that lacks in MT due to amino acid substitution that leads to structural changes in MT protein, which alters the favorable network of interaction and eventually imparts resistance to all inhibitors.


2017 ◽  
Vol 15 (02) ◽  
pp. 1650040 ◽  
Author(s):  
Olga Tarasova ◽  
Dmitry Filimonov ◽  
Vladimir Poroikov

HIV reverse transcriptase (RT) inhibitors targeting the early stages of virus–host interactions are of great interest to scientists. Acquired HIV RT resistance happens due to mutations in a particular region of the pol gene encoding the HIV RT amino acid sequence. We propose an application of the previously developed PASS algorithm for prediction of amino acid substitutions potentially involved in the resistance of HIV-1 based on open data. In our work, we used more than 3200 HIV-1 RT variants from the publicly available Stanford HIV RT and protease sequence database already tested for 10 anti-HIV drugs including both nucleoside and non-nucleoside RT inhibitors. We used a particular amino acid residue and its position to describe primary structure-resistance relationships. The average balanced accuracy of the prediction obtained in 20-fold cross-validation for the Phenosense dataset was about 88% and for the Antivirogram dataset was about 79%. Thus, the PASS-based algorithm may be used for prediction of the amino acid substitutions associated with the resistance of HIV-1 based on open data. The computational approach for the prediction of HIV-1 associated resistance can be useful for the selection of RT inhibitors for the treatment of HIV infected patients in the clinical practice. Prediction of the HIV-1 RT associated resistance can be useful for the development of new anti-HIV drugs active against the resistant variants of RT. Therefore, we propose that this study can be potentially useful for anti-HIV drug development.


1996 ◽  
Vol 7 (5) ◽  
pp. 243-252 ◽  
Author(s):  
R.W. Buckheit ◽  
V. Fliakas-Boltz ◽  
J.D. Russell ◽  
M. Snow ◽  
L.A. Pallansch ◽  
...  

Structure-activity relationship evaluations with a series of diarylsulphone non-nucleoside reverse transcriptase (RT) inhibitors indicated that the steric properties of the molecule and compound lipophilicity primarily contributed to the overall level of activity of the compounds against human immunodeficiency virus type 1 (HIV-1). The most active compounds in the diarylsulphone series had an orthonitro group and yielded anti-HIV activity at sub-micromolar concentrations. Compounds of the diarylsulphone class exhibited antiviral properties similar to other members of the pharmacologic class of HIV-1 specific non-nucleoside reverse transcriptase inhibitors, including activity in a wide variety of established and primary human cells, activity against a wide variety of laboratory and clinical virus isolates, and activity when challenged at high multiplicity of infection. Synergistic inhibition of HIV-1 was observed when the diarylsulphone NSC 667952 was used with the nucleoside analogues AZT, ddl, 3TC and d4T, the protease inhibitor KNI 272 and the sulphonated dye resobene; additive effects were observed when NSC 667952 was used with the nucleoside analogue ddC and other non-nucleoside RT inhibitors. The diarylsulphones exhibited a unique sensitivity profile when evaluated against both virus isolates and purified reverse transcriptase containing non-nucleoside reverse transcriptase inhibitor resistance-engendering mutations. Unlike other members of the class of non-nucleoside compounds, NSC 667952 remained active against virus isolates with the L100I amino acid change in the RT. The compound was, however, highly sensitive to Y181C., K103N and K101E amino acid changes in the RT. The diarylsulphone selected for resistant virus populations which possessed the Y181C amino acid change in the reverse transcriptase and which exhibited enhanced sensitivity to the non-nucleoside inhibitors calanolide A and costatolide.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natesh Singh ◽  
Bruno O. Villoutreix ◽  
Gerhard F. Ecker

Abstract L-type Amino acid Transporter 1 (LAT1) plays a significant role in the growth and propagation of cancer cells by facilitating the cross-membrane transport of essential nutrients, and is an attractive drug target. Several halogen-containing L-phenylalanine-based ligands display high affinity and high selectivity for LAT1; nonetheless, their molecular mechanism of binding remains unclear. In this study, a combined in silico strategy consisting of homology modeling, molecular docking, and Quantum Mechanics-Molecular Mechanics (QM-MM) simulation was applied to elucidate the molecular basis of ligand binding in LAT1. First, a homology model of LAT1 based on the atomic structure of a prokaryotic homolog was constructed. Docking studies using a set of halogenated ligands allowed for deriving a binding hypothesis. Selected docking poses were subjected to QM-MM calculations to investigate the halogen interactions. Collectively, the results highlight the dual nature of the ligand-protein binding mode characterized by backbone hydrogen bond interactions of the amino acid moiety of the ligands and residues I63, S66, G67, F252, G255, as well as hydrophobic interactions of the ligand’s side chains with residues I139, I140, F252, G255, F402, W405. QM-MM optimizations indicated that the electrostatic interactions involving halogens contribute to the binding free energy. Importantly, our results are in good agreement with the recently unraveled cryo-Electron Microscopy structures of LAT1.


2005 ◽  
Vol 68 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Jan Balzarini ◽  
Joeri Auwerx ◽  
Fátima Rodríguez-Barrios ◽  
Allel Chedad ◽  
Viktor Farkas ◽  
...  

Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Vol 17 (1) ◽  
pp. 71-84
Author(s):  
Riham M. Bokhtia ◽  
Siva S. Panda ◽  
Adel S. Girgis ◽  
Hitesh H. Honkanadavar ◽  
Tarek S. Ibrahim ◽  
...  

Background: Bacterial infections are considered as one of the major global health threats, so it is very essential to design and develop new antibacterial agents to overcome the drawbacks of existing antibacterial agents. Method: The aim of this work is to synthesize a series of new fluoroquinolone-3-carboxamide amino acid conjugates by molecular hybridization. We utilized benzotriazole chemistry to synthesize the desired hybrid conjugates. Result: All the conjugates were synthesized in good yields, characterized, evaluated for their antibacterial activity. The compounds were screened for their antibacterial activity using methods adapted from the Clinical and Laboratory Standards Institute. Synthesized conjugates were tested for activity against medically relevant pathogens; Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27856) Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 19433). Conclusion: The observed antibacterial experimental data indicates the selectivity of our synthesized conjugates against E.Coli. The protecting group on amino acids decreases the antibacterial activity. The synthesized conjugates are non-toxic to the normal cell lines. The experimental data were supported by computational studies.


Sign in / Sign up

Export Citation Format

Share Document