Structure Based Drug Design and Molecular Docking Studies of Anticancer Molecules Paclitaxel, Etoposide and Topotecan using Novel Ligands

2020 ◽  
Vol 17 (2) ◽  
pp. 183-190
Author(s):  
Manisha Yadav ◽  
Swasti Dhagat ◽  
Jujjavarapu S. Eswari

Background: Tubulin is the biochemical target for several clinically used anticancer drugs as it helps in the formation of mitotic spindle during mitosis stage of cell division. Many of the anti-cancer drugs are known to interact with tubulin and microtubules including some plant alkaloids, such as paclitaxel, etoposide and topotecan. In silico drug design of these molecules were performed prior to testing these drugs in vitro. In silico drug design of these anti-cancer drugs becomes a challenge due to the complex structure of target protein. This challenge was overcome by predicting the structure of the target protein (tubulin) by homology modeling. Methods: In this study, computer aided drug designing approach was applied to predict the suitable docking site in target protein and the interaction of tubulin protein with paclitaxel, etoposide and topotecan was explored by molecular docking using Schrödinger software. Docking score and glide energy were determined with ligands to validate their anticancer properties. Results: The results indicate that etoposide is the best drug for tubulin with a docking score of - 4.916 and glide energy of -46.470 kcal/mol compared to paclitaxel and topotecan. Conclusion: The testing of these drugs in silico provides an alternate to in vitro testing of these molecules on cancer cell lines which is a time and cost intensive process. The in silico study of parameters, such as docking score and glide energy, will help pharmacists in developing new molecules as targets for cancers in a time and cost-effective manner.

2019 ◽  
Vol 15 (5) ◽  
pp. 445-455 ◽  
Author(s):  
Suraj N. Mali ◽  
Sudhir Sawant ◽  
Hemchandra K. Chaudhari ◽  
Mustapha C. Mandewale

Background: : Thiadiazole not only acts as “hydrogen binding domain” and “two-electron donor system” but also as constrained pharmacophore. Methods:: The maleate salt of 2-((2-hydroxy-3-((4-morpholino-1, 2,5-thiadiazol-3-yl) oxy) propyl) amino)- 2-methylpropan-1-ol (TML-Hydroxy)(4) has been synthesized. This methodology involves preparation of 4-morpholino-1, 2,5-thiadiazol-3-ol by hydroxylation of 4-(4-chloro-1, 2,5-thiadiazol-3-yl) morpholine followed by condensation with 2-(chloromethyl) oxirane to afford 4-(4-(oxiran-2-ylmethoxy)-1,2,5-thiadiazol- 3-yl) morpholine. Oxirane ring of this compound was opened by treating with 2-amino-2-methyl propan-1- ol to afford the target compound TML-Hydroxy. Structures of the synthesized compounds have been elucidated by NMR, MASS, FTIR spectroscopy. Results: : The DSC study clearly showed that the compound 4-maleate salt is crystalline in nature. In vitro antibacterial inhibition and little potential for DNA cleavage of the compound 4 were explored. We extended our study to explore the inhibition mechanism by conducting molecular docking, ADMET and molecular dynamics analysis by using Schrödinger. The molecular docking for compound 4 showed better interactions with target 3IVX with docking score of -8.508 kcal/mol with respect to standard ciprofloxacin (docking score= -3.879 kcal/mol). TML-Hydroxy was obtained in silico as non-carcinogenic and non-AMES toxic with good percent human oral absorption profile (69.639%). TML-Hydroxy showed the moderate inhibition against Mycobacteria tuberculosis with MIC 25.00 μg/mL as well as moderate inhibition against S. aureus, Bacillus sps, K. Pneumoniae and E. coli species. Conclusion: : In view of the importance of the 1,2,5-thiadiazole moiety involved, this study would pave the way for future development of more effective analogs for applications in medicinal field.


2020 ◽  
Author(s):  
Safaet Alam ◽  
Nazim Uddin Emon ◽  
Mohammad A. Rashid ◽  
Mohammad Arman ◽  
Mohammad Rashedul Haque

AbstractBackgroundColocasia gigantea is locally named as kochu and also better known due to its various healing power. This research is to investigate the antidiarrheal, antimicrobial, and antioxidant possibilities of the methanol soluble extract of Colocasia gigantea.MethodsAntidiarrheal investigation was performed by using in vivo castor oil induced diarrheal method where as in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites were appraised with Schrödinger-Maestro v 11.1.ResultsThe induction of plant extract (200 and 400 mg/kg, b.w, p.o), the castor oil mediated diarrhea has been minimized 19.05 % (p < 0.05) and 42.86 % (p < 0.001) respectively. The methanolic extract of C. gigantea showed mild sensitivity against almost all the tested strains but it shows high consistency of phenolic content and furthermore yielded 67.68 μg/mL of IC50 value in the DPPH test. The higher and lower binding affinity was shown in beta-amyrin and monoglyceryl stearic acid against the kappa-opioid receptor (PDB ID: 4DJH) with a docking score of -3.28 kcal/mol and -6.64 kcal/mol respectively. In the antimicrobial investigation, Penduletin and Beta-Amyrin showed the highest and lowest binding affinity against the selected receptors with the docking score of -8.27 kcal/mol and -1.66 kcal/mol respectively.ConclusionThe results of our scientific research reflect that the methanol soluble extract of C. gigantea is safe which may provide possibilities of alleviation of diarrhea and as a potential wellspring of antioxidants which can be considered as an alternate source for exploration of new medicinal products.


2020 ◽  
Vol 32 (11) ◽  
pp. 2713-2721
Author(s):  
S. Triveni ◽  
C. Naresh Babu ◽  
E. Bhargav ◽  
M. Vijaya Jyothi

To design and synthesize novel triazoles, indazoles and aminopyridines from various (thiophene-2-yl)prop-2-en-1-one derivatives as antitubercular leads by in silico and in vitro methods. in silco Drug design, ADME prediction and molecular docking studies were performed to assess drug likeliness and antitubercular potential of all 30 novel triazoles, indazoles and aminopyridines. in silico Drug design studies revealed that the synthetic routes applied were appropriate according to the calculations of Swiss-ADME that measure synthetic accessibility. Most of the synthesized compounds found to have considerable binding score with enoyl ACP reductase enzyme of Mycobacterium tuberculosis. All the synthesized compounds were evaluated for antitubercular potential against Drug Resistant Mycobacterium tuberculosis H37Rv strain by Luciferase reporter assay method. Most of the synthesized compounds exhibited remarkable antitubercular potential against resistant strain.


2020 ◽  
Vol 16 (1) ◽  
pp. 54-72 ◽  
Author(s):  
Surabhi Pandey ◽  
B.K. Singh

Background: There are over 44 million persons who suffer with Alzheimer’s disease (AD) worldwide, no existence of cure and only symptomatic treatments are available for it. The aim of this study is to evaluate the anti-Alzheimer potential of designed AChEI analogues using computer simulation docking studies. AChEIs are the most potential standards for treatment of AD, because they have proven efficacy. Among all AChEIs donepezil possesses lowest adverse effects, it can treat mildmoderate- severe AD and only once-daily dosing is required. Therefore, donepezil is recognized as a significant prototype for design and development of new drug molecule. Methods: In this study the Inhibitory potential of the design compounds on acetylcholinesterase enzyme has been evaluated. Docking studies has been performed which further analyzed by in-silico pharmacokinetic evaluation through pharmacopredicta after that Interaction modes with enzyme active sites were determined. Docking studies revealed that there is a strong interaction between the active sites of AChE enzyme and analyzed compounds. Results: As a result 26 compounds have been indicates better inhibitory activity on AChE enzyme and all the screening parameters have also been satisfied by all 26 compounds. From these 26 compounds, six compounds 17, 18, 24, 30, 36 and 56 are found to be the most potent inhibitors of this series by insilico study through INVENTUS v 1.1 software, having highest bio-affinities i.e. - 8.51, - 7.67, - 8.30, - 7.59, - 8.71 and -7.62 kcal/mol respectively, while the standard or reference drug donepezil had binding affinity of - 6.32 kcal/mol. Conclusion: Computer aided drug design approach has been playing an important role in the design and development of novel anti- AD drugs. With the help of structure based drug design some novel analogues of donepezil have been designed and the molecular docking studies with structure based ADME properties prediction studies is performed for prediction of AChE inhibitory activity. The binding mode of proposed compounds with target protein i.e. AChE has been evaluated and the resulting data from docking studies explains that all of the newly designed analogues had significantly high affinity towards target protein compared to donepezil as a reference ligand.


2022 ◽  
Vol 11 (1) ◽  
pp. 95-104
Author(s):  
Bhavinkumar Vavaiya ◽  
Shivani Patel ◽  
Vrajlal Pansuriya ◽  
Vanita Marvaniya ◽  
Popatbhai Patel

A convenient and efficient synthesis of a series of ethyl-1-(6-(4-substitutedacetylatedpiperazin-1-yl)pyrimidin-4-yl)-5-amino-1H-pyrazole-4-carboxylate (8a-8j) has been developed by five steps which include activation of a methylene group, hydrazinolysis, cyclisation and chloro-amine coupling reactions. Moreover, our proposed mechanism was confirmed in this study demonstrating that ethyl 5-amino-1-(6-chloropyrimidin-4-yl)-1H-pyrazole-4-carboxylate is the key intermediate to fulfill the desired outcomes. In silico and in vitro studies were carried out to identify the active agents among the developed adducts against mycobacterium tuberculosis (PDB ID:4TRO). Compound 8a (Docking Score: -26.81 and MIC: 1.6 ug/mL) was found to be the most potent among the synthesized molecules. All the synthesized compounds showed acceptable drug-like properties which make them suitable for further lead modification using in silico design approaches.


2017 ◽  
Vol 11 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Suko Hardjono ◽  
◽  
Siswandono Siswodihardjo ◽  
Purwanto Pramono ◽  
Win Darmanto ◽  
...  
Keyword(s):  

2019 ◽  
Vol 19 (5) ◽  
pp. 587-591 ◽  
Author(s):  
Baishakhi De ◽  
Koushik Bhandari ◽  
Francisco J.B. Mendonça ◽  
Marcus T. Scotti ◽  
Luciana Scotti

Background: The application of in silico tools in the development of anti cancer drugs. Objective: The summing of different computer aided drug design approaches that have been applied in the development of anti cancer drugs. Methods: Structure based, ligand based, hybrid protein-ligand pharmacophore methods, Homology modeling, molecular docking aids in different steps of drug discovery pipeline with considerable saving in time and expenditure. In silico tools also find applications in the domain of cancer drug development. Results: Structure-based pharmacophore modeling aided in the identification of PUMA inhibitors, structure based approach with high throughput screening for the development of Bcl-2 inhibitors, to derive the most relevant protein-protein interactions, anti mitotic agents; I-Kappa-B Kinase β (IKK- β) inhibitor, screening of new class of aromatase inhibitors that can be important targets in cancer therapy. Conclusion: Application of computational methods in the design of anti cancer drugs was found to be effective.


2013 ◽  
Vol 999 (999) ◽  
pp. 1-15
Author(s):  
H.K. Ho ◽  
G. Nemeth ◽  
Y.R. Ng ◽  
E. Pang ◽  
C. Szantai-Kis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document