Mass Spectrometry for Proteomics and Recent Developments in ESI, MALDI and other Ionization Methodologies

2019 ◽  
Vol 16 (4) ◽  
pp. 267-276
Author(s):  
Qurat ul Ain Farooq ◽  
Noor ul Haq ◽  
Abdul Aziz ◽  
Sara Aimen ◽  
Muhammad Inam ul Haq

Background: Mass spectrometry is a tool used in analytical chemistry to identify components in a chemical compound and it is of tremendous importance in the field of biology for high throughput analysis of biomolecules, among which protein is of great interest. Objective: Advancement in proteomics based on mass spectrometry has led the way to quantify multiple protein complexes, and proteins interactions with DNA/RNA or other chemical compounds which is a breakthrough in the field of bioinformatics. Methods: Many new technologies have been introduced in electrospray ionization (ESI) and Matrixassisted Laser Desorption/Ionization (MALDI) techniques which have enhanced sensitivity, resolution and many other key features for the characterization of proteins. Results: The advent of ambient mass spectrometry and its different versions like Desorption Electrospray Ionization (DESI), DART and ELDI has brought a huge revolution in proteomics research. Different imaging techniques are also introduced in MS to map proteins and other significant biomolecules. These drastic developments have paved the way to analyze large proteins of >200kDa easily. Conclusion: Here, we discuss the recent advancement in mass spectrometry, which is of great importance and it could lead us to further deep analysis of the molecules from different perspectives and further advancement in these techniques will enable us to find better ways for prediction of molecules and their behavioral properties.

2018 ◽  
Vol 9 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
Michael Wleklinski ◽  
Bradley P. Loren ◽  
Christina R. Ferreira ◽  
Zinia Jaman ◽  
Larisa Avramova ◽  
...  

We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging.


2020 ◽  
Vol 132 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Clint M. Alfaro ◽  
Valentina Pirro ◽  
Michael F. Keating ◽  
Eyas M. Hattab ◽  
R. Graham Cooks ◽  
...  

OBJECTIVEThe authors describe a rapid intraoperative ambient ionization mass spectrometry (MS) method for determining isocitrate dehydrogenase (IDH) mutation status from glioma tissue biopsies. This method offers new glioma management options and may impact extent of resection goals. Assessment of the IDH mutation is key for accurate glioma diagnosis, particularly for differentiating diffuse glioma from other neoplastic and reactive inflammatory conditions, a challenge for the standard intraoperative diagnostic consultation that relies solely on morphology.METHODSBanked glioma specimens (n = 37) were analyzed by desorption electrospray ionization–MS (DESI-MS) to develop a diagnostic method to detect the known altered oncometabolite in IDH-mutant gliomas, 2-hydroxyglutarate (2HG). The method was used intraoperatively to analyze tissue smears obtained from glioma patients undergoing resection and to rapidly diagnose IDH mutation status (< 5 minutes). Fifty-one tumor core biopsies from 25 patients (14 wild type [WT] and 11 mutant) were examined and data were analyzed using analysis of variance and receiver operating characteristic curve analysis.RESULTSThe optimized DESI-MS method discriminated between IDH-WT and IDH-mutant gliomas, with an average sensitivity and specificity of 100%. The average normalized DESI-MS 2HG signal was an order of magnitude higher in IDH-mutant glioma than in IDH-WT glioma. The DESI 2HG signal intensities correlated with independently measured 2HG concentrations (R2 = 0.98). In 1 case, an IDH1 R132H–mutant glioma was misdiagnosed as a demyelinating condition by frozen section histology during the intraoperative consultation, and no resection was performed pending the final pathology report. A second craniotomy and tumor resection was performed after the final pathology provided a diagnosis most consistent with an IDH-mutant glioblastoma. During the second craniotomy, high levels of 2HG in the tumor core biopsies were detected.CONCLUSIONSThis study demonstrates the capability to differentiate rapidly between IDH-mutant gliomas and IDH-WT conditions by DESI-MS during tumor resection. DESI-MS analysis of tissue smears is simple and can be easily integrated into the standard intraoperative pathology consultation. This approach may aid in solving differential diagnosis problems associated with low-grade gliomas and could influence intraoperative decisions regarding extent of resection, ultimately improving patient outcome. Research is ongoing to expand the patient cohort, systematically validate the DESI-MS method, and investigate the relationships between 2HG and tumor heterogeneity.


The Analyst ◽  
2014 ◽  
Vol 139 (22) ◽  
pp. 5868-5878 ◽  
Author(s):  
Shin Muramoto

The desorption profile of analyte molecules desorbed by desorption electrospray ionization was imaged and characterized using time-of-flight secondary ion mass spectrometry.


2021 ◽  
pp. 2001088
Author(s):  
Jean‐Arthur Amalian ◽  
Tathagata Mondal ◽  
Evgeniia Konishcheva ◽  
Gianni Cavallo ◽  
Benoît Eric Petit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document