scholarly journals In Silico Drug Discovery of 4-Hyroxypanduratin A, 6-Gingerol and Luteolin Targeting Nipah Virus

Author(s):  
Anurag Verma ◽  
Piyush Mittal ◽  
Milind S. Pande ◽  
Neelanchal Trivedi

Nipah Virus is a zoo tonic virus and has re-emerged again with more deadliness. NiV has infected many animals and humans worldwide and a huge loss to life has been faced. NiV contains a Fusion protein on its outer membrane which helps in the virus entry into the host cell. This fusion protein is a virulent factor and is a major anti-viral target. Many medicinal plants have been used against viral diseases, current research aims towards the potential of three daily dietary food elements that can be used as an anti-viral agent. In-silico studies are performed with 4-hyroxypanduratin A, 6-gingerol and Luteolin against the NiV-F and binding energies were calculated. It was reported that these phyto-compounds have good negative binding energies and they have the promising potential against Nipah Virus. Further in-vitro research can be performed with these phyto-compounds to design a specific drug against Nipah Virus.

Pharmacia ◽  
2020 ◽  
Vol 67 (4) ◽  
pp. 363-371
Author(s):  
Patrick Okechukwu ◽  
Mridula Sharma ◽  
Wen Hui Tan ◽  
Hor Kuan Chan ◽  
Kavita Chirara ◽  
...  

Palmatine a protoberberine alkaloid has been previously reported to possess in vivo antidiabetic and antioxidant property. The aim of the experiment is to evaluate the in vitro antidiabetic activity and in-silico studies of the binding energies of Palmatine, acarbose, and Sitagliptin with the three enzymes of alpha-amylase, alpha-glucosidase, and dipeptidyl peptidase-IV (DPP-IV). The in vitro antidiabetic study was done by evaluating the inhibitory effect of palmatine on the activities of alpha-amylase, alpha-glucosidase, and DPP-IV. Acarbose, and sitagliptin was used as standard drug. The molecular docking study was performed to study the binding interactions of palmatine with alpha-glucosidase, a-amylase, and DPP-IV. The binding interactions were compared with the standard compounds Sitagliptin and acarbose. Palmatine with IC50 (1.31 ± 0.27 µM) showed significant difference of (< 0.0001) higher inhibiting effect on alpha-amylase and weak inhibiting effect on alpha-glucosidase enzyme with IC50 (9.39 ± 0.27 µM) and DPP-IV with IC50 (8.7 ± 1.82 µM). Palmatine possess inhibition effect on the three enzymes.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Raju Lipin ◽  
Anantha Krishnan Dhanabalan ◽  
Krishnasamy Gunasekaran ◽  
Rajadurai Vijay Solomon

AbstractFavipiravir is found to show excellent in-vitro inhibition activity against Nipah virus. To explore the structure–property relationship of Favipiravir, in silico designing of a series of piperazine substituted Favipiravir derivatives are attempted and computational screening has been done to evaluate its bimolecular interactions with Nipah virus. The geometrical features of all the molecules have been addressed from Density Functional Theory calculations. Chemical reactivity descriptor analysis was carried out to understand various reactivity parameters. The drug-likeness properties were estimated by a detailed ADMET study. The binding ability and the mode of binding of these derivatives into the Nipah virus are obtained from molecular docking studies. Our calculations show greater binding ability for the designed inhibitors compared to that of the experimentally reported molecule. Overall, the present work proves to offers new insights and guidelines for synthetic chemists to develop new drugs using piperazine substituted Favipiravir in the treatment of Nipah virus.


2021 ◽  
Vol 18 ◽  
Author(s):  
Imen Khelifi ◽  
Audrey Tourrette ◽  
Daycem Khelifi ◽  
Thomas Efferth ◽  
El Akrem Hayouni ◽  
...  

Background: 1,4-Naphthoquinones (1,4-NQs) are secondary plant metabolites with numerous biological activities. 1,4-NQs display low water solubility and poor bioavailability. Bigels are a new technology with great potential, which are designated as drug delivery systems. Biphasic bigels consisting of solid and liquid components represent suitable formulations improving the diffusion and bioavailability of NQs into the skin. Objective: We evaluated the in silico and in vitro activity of 5,8-dihydroxy-1,4-naphthoquinone (M1) and 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (M2) on elastase and assessed their cytotoxicity towards COLO38 melanoma cells. The 1,4-NQs were loaded into bigels for topical application. Methods: Molecular docking was performed, and cytotoxicity was evaluated on COLO38 cells using the resazurin assay. M1 and M2 were separately incorporated into bigels consisting of hydrogel organogel with sweet almond oil as a non-polar solvent and span 65 as organogelator. Their rheological behavior and microscopic properties were characterized. The diffusion kinetics and permeation of 1,4-NQs from bigels were studied by a paddle-over-extraction cell and a “Franz cell” in vitro permeation model. Results: Molecular docking data predicted high interactions between elastase and ligands. Hydrogen bonds to LYS233 were observed for M1, M2, and phosphoramidon (positive control). The average binding energies were -8.5 and -9.7 kcal/mol for M1 and M2 and -12.6 kcal/mol for phosphoramidon. M1 and M2 inhibited the elastase activity by 58.9 and 56.6%, respectively. M1 and M2 were cytotoxic towards COLO38 cells (IC50: 2.6 and 9.8 µM) y. The M1 release from bigels was faster and more efficient than that of M2. Conclusion: M1 and M2 are promising for skin disease treatment. Biphasic organogel-hydrogel bigels are efficient and safe formulations to overcome their low bioavailability.


2021 ◽  
pp. 187-202
Author(s):  
Mohammad Arif Pasha ◽  
Sumanta Mondal ◽  
Naresh Panigrahi

A simple and efficient method for the synthesis of fifteen novel ketene dithioacetals (2-(6-amino5-cyano-4-aryl-4H-1,3-dithiin-2-ylidene) malononitrile) via a one-pot three-component reaction of activated methylene group malononitrile with carbon disulfide in the presence of arylidene malononitriles were reported. The effects of LiOH.H2O as a base at different concentrations have been investigated and can provide products in good yields at 40-50ºC temperature (54-89%). All the synthesized ketene dithioacetals compounds (MCB1-MCB15) were checked for favorable pharmacokinetic param¬eters along with toxicities which are based on drug-likeness explained by Lipinski’s rule of five by Med chem designer software correlated with that of pkCSM online tool. Explorations of synthesized ketene dithioacetals compounds for the antimicrobial study were found to be effective towards Staphylococcus aureus (MCB5 and MCB13) with a zone of inhibition at 26mm and 22mm which is compared to that of standard ciprofloxacin (26mm). This made our study to explore the inhibition mechanism with the help of molecular docking studies with possible binding energies (-6.4 to -8.9 kJ/mol) by pyrx 0.8 software to represent a good prediction of interactions between the ligand and protein (2XCT). Further evaluation of druggability and ADMET predictions compounds MCB5 and MCB13 were found to be effective. Based on the in-vitro and in-silico studies a series of ketene dithioacetals compounds may be helpful for further studying SAR and designing more potent antimicrobials.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen Sisakht ◽  
Amir Mahmoodzadeh ◽  
Mohammadsaeid Zahedi ◽  
Davood Rostamzadeh ◽  
Amin Moradi Hasan-Abad ◽  
...  

Background: Human papillomavirus (HPV) is the main biological agent causing sexually transmitted diseases (STDs), including precancerous lesions and several types of prevalent cancers. To date, numerous types of vaccines are designed to prevent high-risk HPV. However, their prophylactic effect is not the same and does not clear previous infections. Therefore, there is an urgent need for developing therapeutic vaccines that trigger cell-mediated immune responses for the treatment of HPV. The HPV16 E6 and E7 proteins are ideal targets for vaccine therapy against HPV. Fusion protein vaccines, which include both immunogenic interest protein and an adjuvant for augmenting the immunogenicity effects, are theoretically capable of guarantee the power of the immune system against HPV. Method: A vaccine construct, including HPV16 E6/E7 proteins along with a heat shock protein GP96 (E6/E7-NTGP96 construct), was designed using in silico methods. By the aid of the SWISS-MODEL server, the optimal 3D model of the designed vaccine was selected, followed by physicochemical and molecular parameters were performed using bioinformatics tools. Docking studies were done to evaluate the binding interaction of the vaccine. Allergenicity, immunogenicity, B, and T cell epitopes of the designed construct were predicted. Results: Immunological and structural computational results illustrated that our designed construct is potentially proper for stimulation of cellular and humoral immune responses against HPV. Conclusion: Computational studies showed that the E6/E7-NTGP96 construct is a promising candidate vaccine that needs further in vitro and in vivo evaluations.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahboob Ali ◽  
Momin Khan ◽  
Khair Zaman ◽  
Abdul Wadood ◽  
Maryam Iqbal ◽  
...  

: Background: The inhibition of α-amylase enzyme is one of the best therapeutic approach for the management of type II diabetes mellitus. Chalcone possesses a wide range of biological activities. Objective: In the current study chalcone derivatives (1-17) were synthesized and evaluated their inhibitory potential against α-amylase enzyme. Method: For that purpose, a library of substituted (E)-1-(naphthalene-2-yl)-3-phenylprop-2-en-1-ones was synthesized by ClaisenSchmidt condensation reaction of 2-acetonaphthanone and substituted aryl benzaldehyde in the presence of base and characterized via different spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C-NMR. Results: Sixteen synthetic chalcones were evaluated for in vitro porcine pancreatic α-amylase inhibition. All the chalcones demonstrated good inhibitory activities in the range of IC50 = 1.25 ± 1.05 to 2.40 ± 0.09 μM as compared to the standard commercial drug acarbose (IC50 = 1.34 ± 0.3 μM). Conclusion: Chalcone derivatives (1-17) were synthesized, characterized, and evaluated for their α-amylase inhibition. SAR revealed that electron donating groups in the phenyl ring have more influence on enzyme inhibition. However, to insight the participation of different substituents in the chalcones on the binding interactions with the α-amylase enzyme, in silico (computer simulation) molecular modeling analyses were carried out.


Sign in / Sign up

Export Citation Format

Share Document