(Substituted)-benzo[b]thiophene-4-carboxamide Synthesis and Antiproliferative Activity Study

2020 ◽  
Vol 17 (5) ◽  
pp. 563-573 ◽  
Author(s):  
Chandrakant Dhondiram Pawar ◽  
Dattatraya Navnath Pansare ◽  
Devanand Baburao Shinde

Background: Thiophene ring forms important building block in medicinal chemistry. Literature reveals that thiophene ring in combination with different groups shows different activity. By keeping these things in mind we have designed and synthesized a new series of amide and sulfonamide coupled thiophene. A series of novel substituted 3-sulfamoylbenzo[b]thiophene-4- carboxamide molecules containing sulfonamide and amide group were designed, synthesized and used for anti-proliferative activity study. Methods: The final compounds 16-36 were synthesized by using series of reactions comprising sulfonation, sulfonamide coupling, hydrolysis and peptide coupling. The yields of compounds 16- 36 are in the range of 90-98%. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR, LCMS and the purity was checked through HPLC analysis. The compounds were further tested for their in vitro anticancer activity against a series of cell lines A549, HeLa, MCF-7 and Du-145. Results: The intermediates 8-13, 15 and final compounds 16-36 were synthesized in good yields. The synthesized compounds were further tested for their anticancer activity and most of compounds showed moderate to good anticancer activity against all four cell lines. Conclusion: We have synthesized 21 compounds and were screened for anticancer activity against MCF-7, HeLa, A-549 and Du-145 cancer cell lines. Most of the compounds were active for tested cell lines with IC50 value in the range of 1.81 to 9.73 μM. The compounds 18, 19, 21, 25, 30, 31 and 33 are most active in cell line data with IC50 value in the range of 1.81 to 2.52 μM.

2019 ◽  
Vol 16 (8) ◽  
pp. 619-626
Author(s):  
Arunkumar Thiriveedhi ◽  
Ratnakaram Venkata Nadh ◽  
Navuluri Srinivasu ◽  
Narayana Murthy Ganta

Nowadays, hybrid drugs have gained a significant role in the treatment of different health problems. Most of the hybrid molecules with different heterocyclic moieties were proved to be potent anti-tumor agents in cancer chemotherapy. Hence, the present study is aimed at the evaluation of in vitro anticancer activity of novel hybrid molecules (pyrazolyl benzoxazole conjugates) and to investigate their anticancer activity by molecular docking studies. Designed, synthesized and characterized the novel pyrazolyl benzoxazole conjugates. Anticancer activity of these compounds was determined by SRB assay. Then molecular docking studies were carried out against proto-oncogene tyrosine-protein kinase (ATP-Src, PDB: 2BDF), a putative target for cancer. All the synthesized compound derivatives were evaluated against MCF-7, KB, Hop62 and A549 cancer cell lines. Compounds 9b and 9c exhibited excellent anticancer activities with GI50 values of <0.1 µM against MCF-7 and A549 cell lines. Compound 9e exhibited good antitumor activity on MCF-7 and A-549 with GI50 values of 0.12 µM and 0.19 µM respectively. Compound 9g showed better anticancer activity on A-549 cancer cell line with GI50 of 0.34 µM. The two-hybrid molecules 9b and 9c are found to be comparably potent with the standard drug doxorubicin and may act as drug lead compounds in medicinal chemistry aspect. The present docking investigation proved that having benzoxazole of compound 9c at the position of benzofuran of reference compound (N-acetyl pyrazoline derivative) might be valid for contributing to anti-cancer activity.


2020 ◽  
Vol 17 (4) ◽  
pp. 434-444 ◽  
Author(s):  
Swathi Krishna ◽  
Byran Gowramma ◽  
Manal Mohammed ◽  
Rajagopal Kalirajan ◽  
Lakshman Kaviarasan ◽  
...  

Background: 1,3,4-thiadiazole is a lead molécule which is versatile for a wide variety of biological activities and in continuation of our interest in establishing some novel heterocyclic compounds for antitumor activity. Objective: The objective of the study was to synthesize series of 5-(1,3-benzodioxol-5-yl)-1,3,4- thiadiazol-2-amine derivative and evaluated for their possible in vitro and in vivo anticancer activity. Methods: The synthesis of 2-aminonaphthoxy-1,3,4-thiadiazole and 5-(1,3-benzodioxol-5-yl)-1,3,4- thiadiazol-2-amine as intermediates were carried out by cyclization method. A mixture of thiosemicarbazide and naphthoxyacetic acid/piperonylic acid and phosphoryl chloride were subjected to cyclization with phosphorous oxychloride to obtain compound 3. Further compounds 1 and 3 were reacted with different aromatic aldehydes in methanol to form compounds 2a-e and 4a-e. The compounds 2a-e and 4a-e were characterized for the melting points, IR, Proton NMR and Mass spectra. The compounds were further evaluated for their anticancer activity. The docking study was performed using Discovery studio 4.1 (Accelrys) software against DNA-binding domain of STAT3. The compounds were analyzed for the ligand-protein binding interaction(s) by molecular docking into the active site of STAT3β using the CDOCKER protocol of Discovery studio (v4.1). Results: The title compounds were screened for in vitro anticancer on human breastadenocarcinoma cells (MCF-7 and Vero). Compounds 4c, 4d and 2d against MCF 7 and 4d against Vero cell lines were found to be the most active dérivatives with IC50 values of 1.03, 2.81 and 3.45 µg/ml against MCF 7 and 31.81 µg/ml against Vero cell lines, respectively. Conclusion: From the in vivo anticancer studies, it was concluded that the synthesized compounds 4c and 4d displayed anticancer activity comparable to the standard drug, while the rest of the compounds demonstrated mild potency for anticancer studies.


2022 ◽  
Vol 15 (1) ◽  
pp. 92
Author(s):  
Lilianna Becan ◽  
Anna Pyra ◽  
Nina Rembiałkowska ◽  
Iwona Bryndal

Thiazolo[4,5-d]pyrimidine derivatives are considered potential therapeutic agents, particularly in the development of anticancer drugs. In this study, new 7-oxo-(2a-e), 7-chloro-(3a-e) and also three 7-amino-(4a-c) 5-trifluoromethyl-2-thioxo-thiazolo[4,5-d]pyrimidine derivatives have been synthesized and evaluated for their potential anticancer activity. These derivatives were characterized by spectroscopic methods and elemental analysis, and the single-crystal X-ray diffraction was further performed to confirm a 3D structure for compounds 2e and 4b. The antiproliferative activity evaluation of twelve new compounds was carried out on a variety of cell lines including four human cancer (A375, C32, DU145, MCF-7/WT) and two normal cell lines (CHO-K1 and HaCaT). Four of them (2b, 3b, 4b and 4c) were selected by the National Cancer Institute and evaluated for their in vitro anticancer activity using the NCI-60 screening program. 7-Chloro-3-phenyl-5-(trifluoromethyl)[1,3]thiazolo[4,5-d]pyrimidine-2(3H)-thione (3b) proved to be the most active among the newly synthesized compounds.


Author(s):  
Mamatha S. V ◽  
S. L. Belagali ◽  
Mahesh Bhat ◽  
Vijay M. Kumbar

Background: Coumarin and benzophenone possess a vast sphere of biological activities whereas thiazoles display various pharmacological properties. Hence we focused on incorporation of coumarin and thiazole core to the benzophenone skeleton to enhance the bioactivity anticipating their interesting biological properties. Objective: The objective of the current work is synthesis and biological evaluation of a novel series of coumarin fused thiazole derivatives. Methods: A novel series of Coumarin conjugated thiazolyl acetamide hybrid derivatives were synthesized by multistep reaction sequence and were characterized by the FT-IR, LCMS and NMR spectral techniques. The newly synthesized compounds were screened for anticancer activity by in-silico and in-vitro methods. The cytotoxicity of the synthesized unique compounds had been executed for two different cancer cell lines MCF-7 (Breast cancer) and KB (Oral cancer) in comparison with standard paclitaxel by MTT assay. Results: The compound 7f is the potent motif with an acceptable range of IC 50 values for anticancer activity were 63.54 µg/ml and 55.67 µg/ml, against the MCF-7 and KB cell lines, respectively. Molecule docking model revealed that this compound formed three conventional hydrogen bonds with the active sites of the amino acids MET 769, ARG 817 and LYS 721. Conclusion: Compound 7f with two methyl groups on the phenoxy ring and one 4-position methoxy group on the benzoyl ring, showed a significant cytotoxic effect. An advantageous level of low toxicity against normal cell line (L292) by MTT assay was determined.


Author(s):  
Asri Peni Wulandari ◽  
R. R. Indry Noviarin Examinati ◽  
Madihah . ◽  
Desi Harneti Putri Huspa ◽  
Poniah Andayaningsih ◽  
...  

Objective: To investigate the in vitro cytotoxicity effect of the crude ethyl acetate extract of Cladosporium sp. on MCF-7, HeLa, and DU-145 cell lines.Methods: In vitro cytotoxicity was evaluated by tetrazolium reduction assay. The percentage of cell inhibition was analyzed using probit analysis to obtain 50% inhibitory concentration (IC50). Morphological alteration of the cell lines after exposure with extract was observed under an inverted microscope.Results: The ethyl acetate extract of the metabolite performed an anticancer activity for cancer cell line MCF-7, HeLa, and DU-145 with IC50 respectively 8.46 μg/ml; 9.87 μg/ml; and 98.03 μg/ml. The extract shows greater the anticancer activity and has strong antiproliferative on MCF-7 and HeLa cell line than DU-145. Confirmation morphological were observed under the inverted microscope showed a morphological change in cancer cells when incubated with the extract.Conclusion: From the performed assay, the crude extract of Cladosporium sp. exhibit cytotoxic activity against MCF-7, HeLA, and DU-145.


Author(s):  
S. N. Mamle Desai ◽  
Rudrax N. S. Priolkar ◽  
Harshank A. Naik Karmali ◽  
Prabhav D. Ambe ◽  
B. S. Biradar

Objective: Synthesis, characterization and evaluation of quinolin-2-one derivatives as possible anticancer agents.Methods: A series of novel 4-hydroxy-1-phenyl/methyl-3-(3-substituted-1-(substitutedimino)propyl)quinolin-2(1H)-one derivatives IIa(1-5)/IIb(1-5) and 4-hydroxy-1-phenyl/methyl-3-(1-(substituedimino)ethyl)quinolin-2(1H)-one derivatives IIIa(1-3)/IIIb(1-3) were synthesised by nucleophilic addition of substituted anilines on 3-acetyl-4-hydroxy-1-phenyl/methylquinolin-2(1H)-one (a/b) and 4-hydroxy-3-(3-substitutedpropanoyl)-1-phenyl/methyl quinolin-2(1H)-one (Ia/Ib); respectively. The synthesised derivatives were characterised by spectral analysis and were tested for their in vitro anticancer activity against K562 and Hep 3b cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method.Results: The compounds were tested for their in vitro anticancer activity against K562 and Hep 3b cell lines at 10, 20, 25, 30 and 50 µg/ml concentration using MTT assay method. The compound 4-hydroxy-3-(3-morpholino-1-(phenylimino)propyl)-1-phenylquinolin-2(1H)-one (IIa-1) showed anticancer activity with IC50 value 20 µg as compared to the control against K562 cell lines. The compound 4-hydroxy-1-phenyl-3-(1-(phenylimino) ethyl) quinolin-2(1H)-one (IIIa-1) showed anticancer activity with IC50 value less than 10 µg.Conclusion: The proposed method for the synthesis of novel derivatives is convenient and gives a good yield. Some of the synthesised compounds showed promising anticancer activity against K562 and Hep 3b cell lines. Compound IIa-1 (R=-C6H5; R1= morpholine; R2= C6H5-NH-) exhibited most potent activity against K562 cell lines. Compound IIIa-1 (R=-C6H5; R3= C6H5-NH-) has been proved to be the most cytotoxic compound among the other derivatives against Hep 3b cell lines.


2016 ◽  
Vol 42 (12) ◽  
pp. 7793-7805 ◽  
Author(s):  
Furkan Özen ◽  
Suat Tekin ◽  
Kenan Koran ◽  
Süleyman Sandal ◽  
Ahmet Orhan Görgülü

2021 ◽  
Vol 12 (2) ◽  
pp. 1648-1658
Author(s):  
Benupani Sahu ◽  
Rajapandi R ◽  
Avik Maji ◽  
Abhik Paul ◽  
Tanushree Singha ◽  
...  

In the present study, eight numbers of new 3- (4-methoxy phenyl)-5-substituted phenyl-2-pyrazoline-1-carbothioamide (5a-h) have been synthesized from 1- (4-methoxy phenyl)-3- (substituted phenyl)-prop-2-en-1-one (3a-h) and structurally characterized by using FT-IR, 1H NMR, 13C NMR, Mass and Elemental analysis. The synthesized molecules were biologically evaluated for their in vitro anticancer activity against human breast adenocarcinoma (MCF-7), liver cancer (Hep-G2) and leukaemia cancer (K-562) cell line using Sulforhodamine B (SRB) bioassay technique. From the all synthesized compounds 5a, 5c, 5d, and 5e exhibited potent anticancer activity (GI50= <10µg/ml) as compared to the controlled drug 5-Fluorouracil (5-FU) (GI50=44.5µg/ml) and Adriamycin (ADR) (GI50= <10µg/ml) on MCF-7 cell lines. Besides this, all the synthesized compounds have exhibited moderate activity against human liver cancer (Hep-G2) and leukaemia cancer (K-562) cell lines. In addition, molecular docking studies were also explored in order to study the probable binding specificity into the active site of Epidermal Growth Factor Receptor tyrosine kinase (EGFR) (PDB ID: 1M17) using Molegro Virtual Docker Evaluation 2013 6.0.1 (MVD). Based on the molecular docking result, it was found that compound 5a exhibited the best interaction with the above target (i.e., EGFR) by interacting with specific amino acid residues such as: Thr 766, Gin 767, Thr 830, Cys 575, Ala 719 and Met 769.


Sign in / Sign up

Export Citation Format

Share Document