Synthesis of Phenyl- and Pyridyl-substituted Benzyloxybenzaldehydes by Suzuki-Miyaura Coupling Reactions

2019 ◽  
Vol 16 (11) ◽  
pp. 1248-1257
Author(s):  
Hedvig Bölcskei ◽  
Andrea Német-Hanzelik ◽  
Zsófia Dubrovay ◽  
Viktor Háda ◽  
György Keglevich

Background: Aryl-methoxybenzaldehydes substituted in various positions may serve as valuable starting materials for the synthesis of biologically active compounds. Methods: Biaryl-methoxybenzaldehydes and pyridyl-aryl-methoxybenzaldehydes were synthesized by the Suzuki-Miyaura cross-coupling reactions as intermediates of potential drug substances. Three different catalytic approaches were compared. The classical Suzuki method utilising tetrakis(triphenylphosphine)palladium and sodium ethoxide, the protocol applying palladium acetate and tri(o-tolyl)phosphine, and the method using tetrakis(triphenylphosphine)palladium and cesium carbonate, were studied. Results: The selected boronic acids were the classical phenylboronic acid, as well as 4-pyridineand 3-pyridineboronic acids. 26 New biaryl-methoxybenzaldehydes or pyridyl-phenylmethoxybenzaldehydes have been synthesized, which may be intermediates for pharmaceutically active compounds. Conclusion: The method of Anderson et al. was preferred, because it provides satisfactory results in all cases.

2004 ◽  
Vol 82 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Richard W Friesen ◽  
Laird A Trimble

4,7-Dichloroquinoline (1a) and 7-chloro-4-iodoquinoline (1b) undergo Suzuki cross-coupling reactions with arylboronic acids catalyzed by phosphine-free palladium acetate in boiling water. Using phenylboronic acid (2), the reaction of 1a provides 7-chloro-4-phenylquinoline (3) (78%) together with diphenylquinoline (4) (12%), while 1b reacts in a much more regioselective fashion and provides 3 in 98% isolated yield. Although 1b undergoes a more regioselective Suzuki reaction than 1a, additional important observations are that the overall reaction of 1b with 2 is three times slower than 1a and that the reaction occurs in the absence of tetrabutylammonium bromide. Using optimized reaction conditions, a variety of aryl and vinylboronic acids undergo regioselective Suzuki cross-coupling with 1b to provide the products 7, 10, and 11 in good to excellent yield.Key words: palladium, cross-coupling, regioselectivity, quinolines, boronic acids.


2020 ◽  
Vol 17 (11) ◽  
pp. 857-863
Author(s):  
Mohammad Ali Nasseri ◽  
Seyyedeh Ameneh Alavi ◽  
Milad Kazemnejadi ◽  
Ali Allahresani

A convenient and efficient chiral CuFe2O4@SiO2-Mn(III) Ch.salen nanocatalyst has been developed for the C-N cross-coupling reactions of aryl halides/ phenylboronic acid with N-heterocyclic compounds in water and/or DMSO under mild conditions. The catalyst could be applied for the N-arylation of a variety of nitrogen-containing heterocycles with aryl chlorides, bromides, iodides and phenylboronic acid under mild conditions. Moderate to good yields were achieved for all substrates. The structure of catalyst was characterized using various techniques including FT-IR, FE-SEM, EDX, XRD, TEM and TGA. The catalyst can be simply recovered and reused for several times without significant loss of activity.


2003 ◽  
Vol 68 (5) ◽  
pp. 837-848 ◽  
Author(s):  
Michal Hocek ◽  
Dana Hocková ◽  
Jan Štambaský

Regioselective Suzuki-Miyaura reaction of 8-bromo-6-iodo-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine with phenylboronic acid gave 8-bromo-6-phenylpurine derivative that was used for cross-coupling reactions (with PhB(OH)2, Me3Al, Et3Al, BnZnCl) or nucleophilic substitutions (with NaOH, NaOMe, NH3, NHMe2 or thiourea). A series of 8-X-substituted 6-phenyl-9-(β-D-ribofuranosyl)purines (X = Ph, Me, Et, Bn, OH, OMe, NH2, NMe2, SH) was prepared in this way directly or after deprotection. None of the title nucleosides exhibited any considerable cytostatic activity.


ChemCatChem ◽  
2012 ◽  
Vol 5 (1) ◽  
pp. 142-145 ◽  
Author(s):  
Rongzhao Zhang ◽  
Chengxia Miao ◽  
Shoufeng Wang ◽  
Chungu Xia ◽  
Wei Sun

Author(s):  
Елена Сергеевна Бахвалова ◽  
Алексей Владимирович Быков ◽  
Линда Жановна Никошвили ◽  
Любовь Львовна Киви

В данной работе методом теории функционала плотности проведен расчет энергий адсорбции бензольного кольца на маленьких кластерах Pd (состоящих из четырех или девяти атомов). Показано, что адсорбция бензола на кластерах палладия ведет к заметному выигрышу системы в энергии: -146 кДж/моль в случае Pd и -117 кДж/моль в случае Pd. Кроме того, для системы Pd * CH рассчитаны энергии адсорбции хлор-, бром- и йоданизола. Показано, что адсорбция йоданизола, характеризующаяся наибольшим выигрышем системы в энергии (-278 кДж/моль), происходит диссоциативно и безактивационно, что принципиально отличает его от хлор- и броманизола. Полученные данные могут использоваться для объяснения различий в поведении катализаторов на основе сверхсшитого полистирола в реакциях кросс-сочетания различных арилгалогенидов c фенилбороновой кислотой, а также того факта, что арилйодиды могут провоцировать образование гомогенных форм палладия. In this paper, the density functional theory calculations were carried out in order to find the adsorption energies of a benzene ring on small Pd clusters consisting of four or nine atoms. The adsorption of benzene on palladium clusters was found to result in a noticeable energy gain of the system: -146 kJ/mol in the case of Pd, and -117 kJ/mol in the case of Pd. The adsorption energies of chloro-, bromo- and iodoanisole on Pd * CH were also calculated. The adsorption of iodoanisole was characterized by the highest energy gain of the system (-278 kJ/mol) and occurred dissociatively without activation, that fundamentally distinguished it from chloro- and bromoanisole. The data obtained can be used to explain the differences in the behavior of catalysts based on hypercross-linked polystyrene in cross-coupling reactions of various aryl halides and phenylboronic acid, and also the fact that aryl iodides can favor the formation of homogeneous forms of palladium.


Synthesis ◽  
2020 ◽  
Author(s):  
Zoltán Hell ◽  
Kinga Juhász ◽  
Ágnes Magyar

AbstractTransition-metal-catalyzed cross-coupling of organo­halides, ethers, sulfides, amines, and alcohols (and derivatives thereof) with Grignard reagents, known as the Kumada–Tamao–Corriu reaction, can be used to prepare important intermediates in the synthesis of numerous­ biologically active compounds. The most frequently used transition metals are nickel, palladium, and iron, but there are several examples for cross-coupling reactions catalyzed by copper, cobalt, manganese, chromium, etc. salts and complexes. The aim of this review is to summarize the most important transition-metal-catalyzed cross-coupling reactions realized in the period 2000 to 2020.1 Introduction2 Nickel Catalysis3 Palladium Catalysis4 Iron Catalysis5 Catalysis by Other Transition Metals5.1 Cobalt Catalysis5.2 Copper Catalysis5.3 Manganese Catalysis5.4 Chromium Catalysis6 Conclusion


Synthesis ◽  
2020 ◽  
Vol 52 (17) ◽  
pp. 2497-2511 ◽  
Author(s):  
Laurence Miesch ◽  
Frédéric Beltran

Tertiary enamides display versatile reactivity and great stability compared to their enamine congeners. This review covers progress made in the development of new methods involving the enaminic reactivity of tertiary enamides with respect to the synthesis of complex nitrogen-containing compounds. A focus on the preparation of biologically active molecules is also presented. The syntheses reported herein are classified based on their reaction type. In addition, mechanistic insights are given for most of the new transformations.1 Introduction2 [2+2] Cycloadditions3 [4+2] Cycloadditions4 Electrocyclizations and Cycloisomerizations5 Sigmatropic Rearrangements6 Nucleophilic Additions7 Tertiary Enamides as Electrophiles8 Cross-Coupling Reactions9 Tertiary-Enamide-Assisted Reactions10 Conclusion and Perspectives


RSC Advances ◽  
2018 ◽  
Vol 8 (59) ◽  
pp. 33828-33844 ◽  
Author(s):  
Akram Hosseinian ◽  
Robab Mohammadi ◽  
Sheida Ahmadi ◽  
Aazam Monfared ◽  
Zahra Rahmani

Arylhydrazines are extremely valuable compounds in organic chemistry that are widely used for the synthesis of a variety of biologically active molecules such as indoles, indazoles, pyrazoles, aryltriazoles, β-lactams and quinazolines.


Sign in / Sign up

Export Citation Format

Share Document