In Vivo Neuronal Cell Differentiation Imaging From Transplanted Stem Cells

Author(s):  
Dong Soo Lee
Human Cell ◽  
2013 ◽  
Vol 27 (2) ◽  
pp. 51-58 ◽  
Author(s):  
Eun Young Kim ◽  
Kyung-Bon Lee ◽  
Jung Yu ◽  
Ji Hye Lee ◽  
Keun Jung Kim ◽  
...  

1993 ◽  
Vol 13 (12) ◽  
pp. 7447-7456
Author(s):  
H Matsushima ◽  
E Bogenmann

The human trkA cDNA was transfected into a malignant human neuroblastoma (NB) cell line (HTLA230) to investigate its role in NB growth and differentiation. This cell line lacks expression of both endogenous trkA and gp75NGFR genes. Transfectants expressing the trkA mRNA and surface-bound receptors transcriptionally activate immediate-early genes (c-fos, c-jun, and jun-B) following nerve growth factor (NGF) stimulation. NGF treatment induces growth arrest as well as down-regulation of the amplified N-myc oncogene. Genes selectively expressed in mature neurons (SCG-10, ret proto-oncogene, GAP-43, etc.) are transcriptionally activated, and neurite outgrowth further demonstrates differentiation of transfectants following NGF stimulation. trkA-expressing NB cells remain tumorigenic in nude mice; however, subcutaneous treatment of tumor-bearing mice with NGF induces Schwannian and neuronal cell differentiation similar to the induction seen in human ganglioneuroblastomas. Thus, trkA expression in HTLA230 cells is sufficient to generate a functional NGF receptor complex that leads to growth-arrested and differentiated NB cells in vitro and in vivo in the presence of NGF. Hence, NGF may play a crucial role in NB cell differentiation and regression in vivo.


BMB Reports ◽  
2011 ◽  
Vol 44 (12) ◽  
pp. 799-804 ◽  
Author(s):  
Dong-Hoon Kwak ◽  
Jung-Woo Jin ◽  
Jae-Sung Ryu ◽  
Kinram Ko ◽  
So-Dam Lee ◽  
...  

2012 ◽  
Vol 87 (Suppl_1) ◽  
pp. 54-54
Author(s):  
Eun Young Kim ◽  
Ji Hye Lee ◽  
Keun Jung Kim ◽  
Kang Sun Park ◽  
Youn Bae Park ◽  
...  

1993 ◽  
Vol 13 (12) ◽  
pp. 7447-7456 ◽  
Author(s):  
H Matsushima ◽  
E Bogenmann

The human trkA cDNA was transfected into a malignant human neuroblastoma (NB) cell line (HTLA230) to investigate its role in NB growth and differentiation. This cell line lacks expression of both endogenous trkA and gp75NGFR genes. Transfectants expressing the trkA mRNA and surface-bound receptors transcriptionally activate immediate-early genes (c-fos, c-jun, and jun-B) following nerve growth factor (NGF) stimulation. NGF treatment induces growth arrest as well as down-regulation of the amplified N-myc oncogene. Genes selectively expressed in mature neurons (SCG-10, ret proto-oncogene, GAP-43, etc.) are transcriptionally activated, and neurite outgrowth further demonstrates differentiation of transfectants following NGF stimulation. trkA-expressing NB cells remain tumorigenic in nude mice; however, subcutaneous treatment of tumor-bearing mice with NGF induces Schwannian and neuronal cell differentiation similar to the induction seen in human ganglioneuroblastomas. Thus, trkA expression in HTLA230 cells is sufficient to generate a functional NGF receptor complex that leads to growth-arrested and differentiated NB cells in vitro and in vivo in the presence of NGF. Hence, NGF may play a crucial role in NB cell differentiation and regression in vivo.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


Sign in / Sign up

Export Citation Format

Share Document