Studies on Sodium lauryl sulphate supported Thorium(IV) phosphate: A New Surfactant supported Cation exchange resin, Useful in Water Purification

2021 ◽  
Vol 17 ◽  
Author(s):  
Amita Somya ◽  
Mamata Singh

Background: With increasing population and decreased quality of drinking water, there is a great demand for the development of new materials and methods that can find applications in the purification of water. This paper presents our small effort from pollution to solution by presenting the synthesis method of new sodium lauryl sulphate supported thorium(IV) phosphate, its characterization, and disquisition of analytical applications by executing some dual separations of calcium. Methods: Sodium lauryl sulphate thorium(IV) phosphate was synthesized by sol gel method. The synthesized exchanger was characterized by some physico-chemical studies like powdered X-ray diffraction, Scanning electron microscopy, Thermo gravimetric-differential thermal analysis, EDAX and Fourier transform-infrared study and was also checked for its competency towards the ion exchange processes and in analytical chemistry. Results: The prominent characteristic of Sodium lauryl sulphate supported Thorium(IV) phosphate has been its tremendously high ion exchange capacity for sodium ions (3.10 meq/g) which is almost two and half times more than the exchange capacity of Thorium(IV) phosphate (ThP), i.e., 1.3 meq/g. The material was resulted in fibrous sheet which is quite thermally, mechanically stable and poorly crystalline. The material has shown selectivity towards Ca2+ and Hg2+ ions. Conclusion: The synthesized cation exchange material has been found quite thermally stable, showing drastically high exchange capacity and selectivity towards Hg2+ and Ca2+ metal ions which might be because of the use of an anionic surfactant, sodium lauryl sulphate while synthesis of Th(IV) phosphate which has played a key role in enhancing the exchange capacity and adsorption of specific metals as well. Therefore, based on the results obtained, the above said materials can find applications in water purification processes and also, in environmental pollution control where removal of Hg2+ and Ca2+ is required.

1977 ◽  
Vol 23 (10) ◽  
pp. 1921-1924 ◽  
Author(s):  
G J Alexander ◽  
S Machiz

Abstract A convenient screening procedure for presence of drugs of abuse in urine consists of two steps: adsorption of the drugs from urine onto a paper loaded with cation-exchange resin and detection of the adsorbed drugs by direct radioimmunoassay. The first step can be performed in the field, the second in a central laboratory. Storage and transport to the laboratory are simplified because specimens adsorbed on dried paper are stable and can be sent in letter-mail. In the laboratory, a small disc of the ion-exchange paper is exposed to antigen and antibody, rinsed, and tested for radioactivity. Discs treated with positive urines are more radioactive than discs from negative urines.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


2005 ◽  
Vol 30 (1) ◽  
pp. 51-58 ◽  
Author(s):  
C. U. Ferreira ◽  
J. E. Gonçalves ◽  
Y. V. Kholin ◽  
Y. Gushikem

The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.


1980 ◽  
Vol 63 (3) ◽  
pp. 460-461
Author(s):  
Saidul Z Qureshi ◽  
Fadhil M Najib ◽  
Fahmi A Mohammed

Abstract An ion exchange method to determine the alkalinity of water-soluble tea ash containing high levels of manganese is described. A chromatographic column containing a strong cation exchange resin (20–50 mesh) in Na+ form, with a bed volume of 5 mL is used. The present ion exchange method is compared to pH titrations and also to the official AOAC methods (31.012, 31.015, 31.016). Results with the new method are accurate and precise.


RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 36374-36385
Author(s):  
Chao Wang ◽  
Nengxiu Pan ◽  
Yuliang Jiang ◽  
Junbin Liao ◽  
Arcadio Sotto ◽  
...  

Novel anion exchange membranes with enhanced ion exchange capacity, dimensional stability and alkali stability were prepared by a facile synthesis method.


2014 ◽  
Vol 11 (1) ◽  
pp. 63 ◽  
Author(s):  
Lara Settimio ◽  
Mike J. McLaughlin ◽  
Jason K. Kirby ◽  
Kate A. Langdon

Environmental context Soils contaminated with silver can have detrimental environmental effects because of silver’s toxicity to a range of soil-dwelling organisms. The total concentration of silver in soil, however, is often not a good indicator of potential toxicity as it does not account for variations in bioavailability. We report a method for soil analysis that measures the amount of silver available for uptake by soil-dwelling organisms, and hence could provide data that better reflect potential toxicity. Abstract There is increasing potential for pollution of soils by silver because of an increased use of this metal in consumer and industrial products. Silver may undergo reactions with soil components that mitigate its availability and potential toxicity, so that the total concentration of this metal in soil is not a useful indicator of potential risk. We developed an isotopic dilution method to simultaneously measure the partitioning (Kd-value) and lability (E-value) of Ag in soils, using the 110mAg isotope. An equilibration solution containing 10mM Ca(NO3)2 was used along with a cation exchange resin to correct for possible interferences from non-isotopically exchangeable Ag associated with soil colloids in suspension (Er-value). The quantification limits for Kd and Er will depend on the amounts of radioisotope spiked and daily detection limits of inductively coupled plasma-mass spectrometry instrumentation but are typically >4000Lkg–1 and <0.92mgkg–1. Measurement of Kd values for Ag in a range of soils indicated strong partitioning to the solid phase is positively associated with soil cation-exchange capacity or total organic carbon and pH. The concentrations of labile Ag in soils geogenically enriched in Ag were not detectable indicating occlusion of the Ag within poorly soluble solid phases. Measurement of labile Ag in soils spiked with a soluble Ag salt and aged for 2 weeks indicated rapid conversion of soluble Ag into non-isotopically exchangeable forms, either irreversibly adsorbed or precipitated in the soil. These results indicate that measurement of labile Ag will be important to estimate toxicity risks to soil organisms or to predict bioaccumulation through the food chain.


1994 ◽  
Vol 353 ◽  
Author(s):  
J. Byegård ◽  
G. Skarnemark ◽  
M. Skålberg

AbstractThe possibility to use alkali metals and alkaline earth metals as slightly sorbing tracers in in-situ sorption experiments in high saline groundwaters has been investigated. The cation exchange characteristics of granite and some fracture minerals (chlorite and calcite) have been studied using the proposed cations as tracers. The results show low Kd’s for Na, Ca and Sr (∽0.1 ml/g), while the sorption is higher for the more electropositive cations (Rb, Cs and Ba). A higher contribution of irreversible sorption can also be observed for the latter group of cations. For calcite the sorption of all the tracers, except Ca, is lower compared to the corresponding sorption to granite and chlorite. Differences in selectivity coefficients and cation exchange capacity are obtained when using different size fractions of crushed granite. The difference is even more pronounced when comparing crushed granite to intact granite.


2009 ◽  
Vol 1240 ◽  
Author(s):  
Prabir K Patra ◽  
Sukalyan Sengupta

AbstractWe have synthesized a series of ion exchange functionalized fibers (IXF) from polystyrene (PS) and polyacrylonitrile (PAN). To obtain strong-acid cation exchange fibers, polystyrene was sulfonated using specific sulfonation protocols. Micron sized fibers (average diameter of 100m) were then produced from the functionalized polystyrene using a single-screw extruder equipped with a 30 hole spinneret with orifice diameter of 0.5 mm with a precise screw speed of 5 rpm, pump speed of 15 rpm, and with a feed rate of 2.4 cc/min. The extruder zone temperature was kept at 250 – 270 °C. Fiber was drawn at 120 degree with a draw ratio of 2. Electrospinning of functionalized polystyrene was also carried out to produce ultrafine functionalized fibers of 100 nm in average diameter. We have also electrospun polystyrene and polyisoprene blended nanofibers to increase the strength of the resulting blend nanofibers compared to pure PS nanofibers. To synthesize weak-acid cation exchange fibers polyacrylonitrile (PAN) was electrospun and the nanofibers obtained were alkaline hydrolyzed with 2 N NaOH for 20 minutes at room temperature to convert nitrile bonds to carboxylate. Cation exchange capacity (CEC) of the microfibers and nanofibers was determined. Sulfonated PS microfibers show high CEC of 4.0 meq/gm compared to that of nanofibers with 2.5 meq/gm. CEC of blended nanofibers of PS and polyisoprene was 2.0 meq/gm. In case of PAN fibers, nanosized electrospun fibers were found to show a CEC of 1.5 meq/gm. Weak-base anion exchange fiber synthesis was undertaken using appropriate protocol and its CEC was measured. For all IXF synthesized, fiber diameter was measured using SEM, degree of functionalization was qualitatively determined using FTIR and ion exchange capacity was computed after mass balance on a binary exchange system after equilibrium.


Sign in / Sign up

Export Citation Format

Share Document