Indian Indigenous Fruits as Radioprotective Agents: Past, Present and Future

Author(s):  
Avinash Kundadka Kudva ◽  
Shamprasad Varija Raghu ◽  
Suresh Rao ◽  
Ponemone Venkatesh ◽  
Sanath Kumar Hegde ◽  
...  

: Ionising radiation has been an important modality in cancer treatment and its value is immense when surgical intervention is risky or might debilitate/adversely affect the patient. However, the beneficial effect of radiation modality is negated by the damage to the adjacent healthy tissue in the field of radiation. Under these situations, the use of radioprotective compounds that can selectively protect normal tissues against radiation injury is considered very useful. However, research spanning over half a century has shown that there are no ideal radioprotectors available. The United States Food and Drug Administration (FDA or USFDA) approved amifostine or WR-2721 (Walter Reed-2721) [chemically S-2-(3-aminopropyl-amino) ethyl phosphorothioic acid] is toxic at their optimal concentrations. This has necessitated the need for agents that are safe and easily acceptable to humans. Background: Dietary agents with beneficial effects like free radical scavenging, antioxidant and immunomodulatory effects are recognized as applicable and have been investigated for their radioprotective properties. Studies in these lines have shown that the fruits of Aegle marmelos (stone apple or bael), Emblica officinalis or Phyllanthus emblica(Indian gooseberry/amla), Eugenia jambolana or Syzygium jambolana (black plum / jamun), Mangifera indica (mango) and Grewia asiatica (phalsa or falsa) that are originally reported to be indigenous to India have been investigated for their usefulness as a radioprotective agent. Objective: The objective of this review is to summarize beneficial effects of the Indian indigenous fruits stone apple, mango, Indian gooseberry, black plum, and phalsa in mitigating radiation-induced side effects, emphasize the underlying mechanism of action for the beneficial effects and address aspects that merit detail investigations for these fruits to move towards clinical application in the near future. Methods: The authors data mined in Google Scholar, PubMed, Embase, and the Cochrane Library for publications in the field from 1981 up to July 2020. The focus was on the radioprotection and the mechanism responsible for the beneficial effects, and accordingly, the articles were collated and analyzed. Results: This article emphasizes the usefulness of stone apple, mango, Indian gooseberry, black plum, and phalsa as radioprotective agents. From a mechanistic view, reports are suggestive that the beneficial effects are mediated by triggering free radical scavenging, antioxidant, anti-mutagenic and anti-inflammatory effects. Conclusion: For the first time, this review addresses the beneficial effects of mango, Indian gooseberry, black plum, stone apple and phalsa as radioprotective agents. The authors suggest that future studies should be directed at understanding the selective radioprotective effects with tumor-bearing laboratory animals to understand their usefulness as radioprotective drug/s during radiotherapy and as a food supplement to protect people getting exposed to low doses of radiation in occupational settings. Phase I clinical trial studies are also required to ascertain the optimal dose and the schedule to be followed with the standardized extract of these fruits. The most important aspect is that these fruits are a part of the diet, have been consumed since the beginning of mankind, are non-toxic, possess diverse medicinal properties, have easy acceptability all of which will help take research forward and be of benefit to patients, occupational workers, agribased sectors and pharma industries.

2011 ◽  
Vol 3 (1) ◽  
pp. 3-8 ◽  
Author(s):  
KIYOSHI KIKUCHI ◽  
NOBUYUKI TAKESHIGE ◽  
NAOKI MIURA ◽  
YOKO MORIMOTO ◽  
TAKASHI ITO ◽  
...  

1988 ◽  
Vol 255 (1) ◽  
pp. H202-H206 ◽  
Author(s):  
B. J. Zimmerman ◽  
D. A. Parks ◽  
M. B. Grisham ◽  
D. N. Granger

Allopurinol has been shown to provide significant protection against ischemia/reperfusion-induced microvascular and parenchymal cell injury. It has been hypothesized that the protection seen with allopurinol after ischemia/reperfusion (I/R) is caused by inhibition of xanthine oxidase. However, recent reports suggest that the beneficial effects of allopurinol in I/R may be caused by direct free radical scavenging. The objective of this study was to determine whether the regimen of allopurinol administration used in most I/R studies leads to a significant modification of the free radical scavenging properties of extracellular fluid (ECF), i.e., plasma and lymph. Plasma and intestinal lymph samples obtained from both control and allopurinol-treated cats were used to assess the following: 1) allopurinol and oxypurinol concentrations, 2) xanthine oxidase inhibition, 3) myoglobin-catalyzed linolenic acid peroxidation, 4) hypochlorous acid scavenging, and 5) protein and nonprotein sulfhydryl content. ECF from allopurinol-treated animals contained approximately 10 microM each of allopurinol and oxypurinol. Ten percent ECF resulted in 80% inhibition of xanthine oxidase activity. Comparable volumes of control ECF did not inhibit xanthine oxidase. Furthermore, allopurinol treatment did not enhance the antioxidant properties of ECF. The results of this study do not support the contention that the beneficial effects of allopurinol in I/R injury are caused by the scavenging of oxidants produced in ECF by activated granulocytes.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chun-Yung Huang ◽  
Chia-Hung Kuo ◽  
Chien-Hui Wu ◽  
Ai-Wei Kuan ◽  
Hui-Ru Guo ◽  
...  

During the processing of mango, a huge amount of peel is generated, which is environmentally problematic. In the present study, a compressional-puffing process was adopted to pretreat the peels of various mango cultivars, and then the bioactive compounds of mango peels were extracted by water or ethanol. The phenolic compound compositions as well as the free radical-scavenging, anti-inflammatory, and antibacterial activities of water extract (WE) and ethanol extract (EE) from nonpuffed (NP) and compressional-puffed (CP) mango peels were further evaluated. It was found that compressional-puffing could increase the yield of extracts obtained from most mango varieties and could augment the polyphenol content of extracts from Jinhwang and Tainoung number 1 (TN1) cultivars. The WE and EE from TN1 exhibited the highest polyphenol content and the greatest free radical-scavenging activities among the mango cultivars tested. Seven phenolic compounds (gallic acid, pyrogallol, chlorogenic acid, p-hydroxybenzoic acid, p-coumaric acid, ECG, and CG) were detected in CPWE (compressional-puffed water extract) and CPEE (compressional-puffed ethanol extract) from TN1, and antioxidant stability of both CPWE and CPEE was higher than that of vitamin C. Further biological experiments revealed that CPEE from TN1 possessed the strongest anti-inflammatory and antibacterial activities, and thus it is recommended as a multibioactive agent, which may have applications in the food, cosmetic, and nutraceutical industries.


Sign in / Sign up

Export Citation Format

Share Document