First Report of Mycovirus Infected Sclerotinia sclerotiorum in Cauliflower from Sirmaur District of Himachal Pradesh

2020 ◽  
Vol 14 (4) ◽  
pp. 283-294
Author(s):  
Tanvi Gupta ◽  
Vanshika ◽  
Chandresh Kumari ◽  
Saurabh Kulshrestha

Background : Sclerotinia sclerotiorum is a ubiquitous fungal pathogen infecting more than 400 plant species. Sclerotinia stem rot is known to cause as high as 100% crop loss in many cases. Currently, chemical fungicides are the only known solution to this problem. Thus, there is an urgent need for developing environment-friendly alternatives for controlling this pathogen. The review of published articles revealed that a number of mycoviruses with the potential of a biocontrol agent against Sclerotinia had been identified from different parts of the world. Objective: The present investigation describes the isolation and characterization of isolates of S. sclerotiorum infecting cauliflower, peas, and mustard for the presence of a potent mycovirus from lower Himachal region of India. Methods: Various infected fields were visited and samples in the form of sclerotia were collected. Various isolates of S. sclerotiorum were obtained, and putative hypovirulent isolates were screened. Thereafter, hypovirulent strains were chosen and mycovirus isolation was performed. Finally, isolates showing an extra nucleic acid band were used for mycovirus isolation and further characterization. Curing of mycovirus was used to confirm if altered phenotype was due to the presence of this virus. Results: A ssDNA mycovirus was identified and confirmed from the growth defective isolate. Conclusion: This mycovirus can in turn act as a biocontrol agent, thus reducing dependency on chemical fungicides and can also be developed in the form of a patent once completely characterized and formulated. To our knowledge, this is the first report on mycovirus isolation from any Sclerotinia sclerotiorumisolate from India.

Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1241-1241 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Several species of Diplotaxis (D. tenuifolia, D. erucoides, and D. muralis), known as wild or sand rocket, are widely cultivated in Italy. Rocket is used in Mediterranean cuisine as salad, a component of packaged salad products, and as a garnish for food. In winter 2003, a severe disease was observed on D. tenuifolia grown in unheated glasshouses on commercial farms near Albenga in northern Italy. Initial symptoms included stem necrosis at the soil level and darkening of leaves. As stem necrosis progressed, infected plants wilted and died. Wilt, characterized by the presence of soft and watery tissues, occurred within a few days on young plants. The disease was extremely severe in the presence of high relative humidity and mild temperature (15°C). Necrotic tissues became covered with white mycelium that produced dark sclerotia. Diseased stem tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 ppm streptomycin sulfate. Sclerotinia sclerotiorum (1) was consistently recovered from infected stem pieces. Sclerotia observed on infected plants measured 1.23 to 3.00 × 1.40 to 5.38 mm (average 2.10 × 2.85 mm). Sclerotia produced on PDA measured 1.00 to 4.28 × 1.00 to 6.01 mm (average 2.38 × 3.23 mm). Pathogenicity of three isolates obtained from infected plants was confirmed by inoculating 30-day-old plants of D. tenuifolia grown in 18-cm-diameter pots in a glasshouse. Inoculum, 2 g per pot of wheat kernels infested with mycelium and sclerotia of each isolate, was placed on the soil surface around the base of each plant. Three replicates of five pots each were used per isolate. Noninoculated plants served as controls. The inoculation trial was repeated once. All plants were kept at temperatures ranging between 10 and 26°C (average 15°C) with an average relative humidity of 80% and were watered as needed. Inoculated plants developed symptoms of leaf yellowing within 12 days, soon followed by the appearance of white mycelium and sclerotia, and eventually wilted. Control plants remained symptomless. S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of infection of D. tenuifolia by S. sclerotiorum in Italy as well as worldwide. The disease currently has been observed in the Liguria Region but not yet in other areas where sand rocket is cultivated. The economic importance of this disease for the crop can be considered medium at the moment, but is expected to increase in the future. Reference: (1) N. F. Buchwald. Den. Kgl. Veterin.er-og Landbohojskoles Aarsskrift, 75, 1949.


1988 ◽  
Vol 51 (3) ◽  
pp. 229-241 ◽  
Author(s):  
Richard S. Soper ◽  
Mitsuaki Shimazu ◽  
Richard A. Humber ◽  
Mark E. Ramos ◽  
Ann E. Hajek

2011 ◽  
Vol 44 (12) ◽  
pp. 1196-1212 ◽  
Author(s):  
K. Majumdar ◽  
M. Razdan ◽  
N. Aggarwal ◽  
K. K. Murali ◽  
R. C. Bhattacharya ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 223-223 ◽  
Author(s):  
I. Y. Choi ◽  
J. H. Kim ◽  
B. S. Kim ◽  
M. J. Park ◽  
H. D. Shin

2021 ◽  
Vol 12 ◽  
Author(s):  
Yijuan Ding ◽  
Yangui Chen ◽  
Baoqin Yan ◽  
Hongmei Liao ◽  
Mengquan Dong ◽  
...  

Sclerotinia sclerotiorum is a devastating necrotrophic fungal pathogen and has a substantial economic impact on crop production worldwide. Magnaporthe appressoria-specific (MAS) proteins have been suggested to be involved in the appressorium formation in Magnaporthe oryzae. Sscnd1, an MAS homolog gene, is highly induced at the early infection stage of S. sclerotiorum. Knock-down the expression of Sscnd1 gene severely reduced the virulence of S. sclerotiorum on intact rapeseed leaves, and their virulence was partially restored on wounded leaves. The Sscnd1 gene-silenced strains exhibited a defect in compound appressorium formation and cell integrity. The instantaneous silencing of Sscnd1 by tobacco rattle virus (TRV)-mediated host-induced gene silencing (HIGS) resulted in a significant reduction in disease development in tobacco. Three transgenic HIGS Arabidopsis lines displayed high levels of resistance to S. sclerotiorum and decreased Sscnd1 expression. Production of specific Sscnd1 siRNA in transgenic HIGS Arabidopsis lines was confirmed by stem-loop qRT-PCR. This study revealed that the compound appressorium-related gene Sscnd1 is required for cell integrity and full virulence in S. sclerotiorum and that Sclerotinia stem rot can be controlled by expressing the silencing constructs of Sscnd1 in host plants.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiong Zhang ◽  
Xiaohui Cheng ◽  
Lijiang Liu ◽  
Shengyi Liu

Sclerotinia sclerotiorum is a notorious fungal pathogen that causes sclerotinia stem rot (SSR) on many important crops in China and worldwide. Here, we present a high- quality genome assembly of S. sclerotiorum strain WH6 using the PacBio SMRT cell platform. The assembled genome has a total size of 38.96 Mbp, with a contig N50 length of 1.90 Mbp, and encodes 10,512 predicted coding genes, including 685 secreted proteins and 65 effector candidates. This is the the first report of a genome sequence from China. The WH6 genome sequence provides a valuable resource for facilitating our understanding of S. sclerotiorum-host interactions and SSR control in China and the world.


Author(s):  
Chu Thanh Binh ◽  
Nguyen Phuong Nhue ◽  
Ho Tuyen ◽  
Bui Thi Viet Ha

The nematophagous – fungi Paecilomyces sp. is curently developed as a biocontrol agent against plant parasitic nematodes (Khan et al., 2003; Yang et al., 2007). Biological control agents can infiltrate certain nematode sites and destroy them by producing some enzymes including chitinase (Khadijeh et al., 2017). The purpose of this study was to purify, determine the chitinase activity from Paecilomyces sp. P1. With Lugol reagent, chitinase of this strain was characterized by diffusion on agar plate. Chitinase specific activity was determined by measuring the release of reducing saccharides from colloidal chitin by the N-acetyl-glucosamine-dinitrosalicylate method at 540 nm. By using the saturated (NH4)2SO4 precipitation at 65% concentration, DEAE A-50 ion exchange chromatography and SDS - PAGE concentration 12.5%, chitinase molecules weigh nearly 50kDa, having a specific activity of 133,3 U/mg, 2,1-fold higher than that of supernatant. Furthermore, method of testing with the nematode Meloidogyne sp., the ability to kill nematodes of Paecilomyces sp. P1 reached 58% efficiency in 96h. These results were a scientific basis for the application of Paecilomyces sp. P1 in the production of nematode insecticides. Keywords Paecilomyces sp. P1; chitinase; purify, biocontrol, Meloidogyne sp References   [1] Nguyễn Ngọc Châu, Tuyến trùng thực vật và cơ sở phòng trừ, NXBKHKTHN, 2003.[2] Nguyễn Hữu Quân, Vũ Văn Hạnh, Quyền Đình Thi, Phạm Thị Huyền, Tinh sạch và đánh giá tính chất lý hóa của chitinase từ nấm Lecanicillium lecanii, Kỷ yếu Hội nghị Công nghệ Sinh học toàn quốc, 1 (2013) 426.[3] CM Baratto, V Dutra, JT Boldo, LB Leiria, MH Vainstein, A. Schrank Isolation, characterization and transcriptional analysis of the chitinase chi2 gene (DQ011663) from the biocontrol fungus Metarhizium anisopliae var. anisopliae., Curr Microbiol, 53 (2006) 217.[4] D. Wharton,. Nematode eggshells, Parasitology 81 (1980) 447.[5] F. A. Zaki, D. S. Bhatti , Effect of castor (Ricinus communus) and the biocontrol fungus Paecilomyces lilacinus on Meloidogyne javanica, Nematologica 36 (1980) 114.[6] H. M. Hussein Al Ajrami., Evaluation the Effect of Paecilomyces lilacinus as a Biocontrol Agent of Meloidogyne javanica on Tomato in Gaza Strip, Faculty of science Master of Biological Sciences Microbiology., 2016.[7] J. De la Cruz, A Hidalgo-Gallego, JM Lora, T Benitez, JA Pintor-Toro, A Llobell , Isolation and characterization of three chitinases from Trichoderma harzianum., Eur. J. Biochem,. 206 (1992) 859.[8] JLD Marco, MC Valadares-Inglis . Purification and characterization of an N-acetylglucosaminidase produced by a Trichodermaharzianum strain which controls Crinipellis perniciosa. Appl. Microbiol. Biotechnol. 64 (2003) 70.[9] JLD Marco , LHC Lima, MV Sousa MV, CR Felix A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches’ broomof cocoa, J Microbiol Biotechnol 16 (2000) 383.[10] Khan Alamgir, Williams Keith, Mark P. Molloy, and Nevalainen Henlena, Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels, Protein Expression and Purification 32 (2003) 210.[11] Khadijeh Abbsi, Doustmorad ZAFARI, Robert WICK., Evaluation of chitinase enzyme in fungal isolates obtained from golden potato cyst nematode (Globodera rostochiensis) Zemdirbyste-Agriculture, 2 (2017) 179.[12] Kopparapu Narasimha Kumar, Peng Zhou, Shuping Zhang, Qiaojuan Yan, Zhuqing Liu, Zhengqiang Jiang, Purification and characterization of a novel chitinase gene from Paecilomyces thermophila expressed in Escherichia coli. Carbonhydrate Reseach 347 (2012) 155.[13] Methanee Homthong, Anchanee Kubera, Matana Srihuttagum, Vipa Hongtrakul, Isolation and characterization of chitinase from soil fungi, Paecilomyces sp. Agriculture and Natural Resources, 1 (2016) 50.[14] RS Patil, V Ghormade, MV Desphande MV ,Chitinolytic enzymes: an exploration. Enzyme Microb. Technol. 26 (2002) 473[15] RJ Leger St , RM Cooper, AK Charnley, Characterization of chitinase and chitobiase produced by the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 58 (1991) 415.[16] S Leger, RJ Joshi RJ, RJ Bidochka, DW Roberts . Characterization and ultrastructural localization of Metarhizium anisopliae, M. xavoviride, and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl Environ Microbiol 62 (1996)907.[17] SC Kang, S. Park, DG Lee ,, Purification and characterization of a novel chitinase from the entomopathogenic fungus, Metarhiziumanisopliae. J Invertebr Pathol., 73 (1999) 276.[18] P.J.M Bonants, P.F.L. Fitters, H. Thijs, E. den Belder, C. Waalwijk, J.W.D.M. Henfling. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs, Microbiology 141(1995) 75.[19] VE Tikhonov, LV Lopez-Llorca, J Salinas, HB Jansson . Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium, Fungal Genet Biol (2002) 67[20] Van Nam Nguyen, YJ Kim, KT Oh, WJ Jung, RD Park , The antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9. Curr. Microbiol 56 (2008) 28.[21] Van Nam Nguyen, In-Jae Oh, Young-Ju Kim, Kil-Yong Kim, Young-Cheol Kim, Ro-Dong Par J Ind., Purification and characterization of chitinases from Paecilomyces variotii DG-3 parasitizing on Meloidogyne incognita eggs, (2009) 195[22] Z. Perveen and S. Shahzad S., , A comparative study of the efficacy of Paecilomyces species against root-knot nematode Meloidogyne incognita. Pakistan Journal of Nematology, 31 (2013) 125


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1093-1093 ◽  
Author(s):  
K. F. Chang ◽  
R. J. Howard ◽  
R. G. Gaudiel ◽  
S. F. Hwang

Purple coneflower (Echinacea purpurea (L.) Moench; Asteraceae), a perennial herb originating from North America, is used as a garden ornamental and is grown commercially for use in medicinal preparations as an immunostimulant. In October 1996, a previously undescribed stem rot disease was observed in a research plot of 6-month-old echinacea plants at Brooks. Seedlings had been raised in small rockwool cubes (2 × 2 × 5 cm3) in a greenhouse, then transplanted into the field in early June. By late August, dead and dying plants were observed throughout the stand. They had dark brown to black stem lesions above and at the soil level and dead leaves with bleached petiole lesions that extended ca. 15 cm above the axil. Diseased stems and petioles often disintegrated, leaving only fibrous tissues intact. Roots were rotted and black. Superficial white mycelium developed over the basal part of affected stems. Black, oblong to irregular-shaped sclerotia, 5.1 to 17.6 mm in size, formed externally on the crown areas after plant death. Sclerotinia sclerotiorum (Lib.) de Bary (1) was isolated from the diseased plants. Five isolates were selected to fulfill Koch's postulates with 3-month-old echinacea seedlings grown in 12-cm pots of soilless mix. Sclerotia from wilted, field-grown echinacea plants were transferred onto potato dextrose agar medium for 2 days at 20°C. Agar disks were cut with a 1-cm cork borer and two plugs containing sclerotial and mycelial tissues were inserted into the soilless mix 0.5 cm deep and 0.5 cm from the opposite sides of stems of test plants. Inoculated plants were enclosed in transparent plastic bags for 5 days and incubated in a growth chamber at 15/18°C (night/day) with a 12-h photoperiod. One to four lower leaves per plant wilted within 1 week after inoculation and aerial mycelia appeared on the petioles. Infected leaves quickly withered, dried, and dropped off the plant after the bags were removed. Plants often died 3 weeks after inoculation and S. sclerotiorum was reisolated from infected crown tissues. This disease was also found on 3-year-old plants of E. pallida (Nutt.) Nutt. var. angustifolia (DC.) Cronq. in Vernon, British Columbia, Canada, in May 1997. This is the first report of sclerotinia stem rot on Echinacea spp., a disease that could have a significant impact on the longevity and productivity of this crop in the field and greenhouse. Reference: (1) L. H. Purdy. Phytopathology 69:875, 1979.


Sign in / Sign up

Export Citation Format

Share Document