scholarly journals Elucidating the Pozzolanic Characteristics of Pastes Containing Circulating Fluidized Bed Fly Ash

2015 ◽  
Vol 9 (1) ◽  
pp. 180-186
Author(s):  
Kae-Long Lin ◽  
Chao-Lung Hwang ◽  
Yu-Min Chang

The aim of this study is to investigate the pozzolanic characteristics of circulating fluidized bed fly ash blended cement (CFBFABC) paste containing circulating fluidized bed fly ash (CFBFA). The initial and final setting time of CFBFABC pastes with CFBFA retards with an increasing CFBFA content. CFBFABC pastes containing 10% CFBFA exhibited a compressive strength similar to that of ordinary Portland cement pastes at the ages of 90 days. X-ray diffraction peaks indicated the presence of portlandite, ettringite, and unreacted C3S (32.6°) and C2 (41.9°). The gel/space ratio of the CFBFABC pastes increased with the curing time and decreased as the CFBFA content increased. The gel/space ratio increased with the curing time because of the progress of hydration, which led to some of the pores being filled. At the ages of 90 days, the gel/space ratio of the CFBFABC pastes containing 10% CFBFA increased to approximately 14%, it is possibly the consumption of Ca(OH)2 and the formation of C-S-H in the CFBFABC pastes. The CFBFABC pastes containing 10% CFBFA did not exhibit any major decrease in the gel/space ratio. It exhibited favorable mechanical characteristics that were observed when the mixing ratio of CFBFA was 10%. Furthermore, CFBFA has the potential, as a pozzolanic material, partially to replace ordinary Portland cement.

2017 ◽  
Vol 11 (1) ◽  
pp. 176-186 ◽  
Author(s):  
Kae- Long Lin ◽  
Ta-Wui Cheng ◽  
Chih-Hsuan Ho ◽  
Yu-Min Chang ◽  
Kang-Wei Lo

A circulating fluidized bed (CFB) boiler generates energy by burning petroleum coke. Because burnt petroleum coke has a high sulfur content, limestone is added to the boiler to reduce the emittance of sulfur dioxide through desulfuration. The residue collected from the boiler is called CFB ash. CFB boilers in Taiwan can produce 328,000 tonnes of CFB fly ash per year. In this study, the pozzolanic characteristics of CFB fly ash were investigated by blending CFB fly ash and ordinary Portland cement (OPC). The CFB fly ash was mainly composed of CaO, SO3, and SiO2 in concentrations of 37.8%, 9.2%, and 2.2%, respectively. The crystals of CFB fly ash contained 3CaO.SiO2, 2CaO.SiO2, Ca(OH)2, C-S-H (Tobermolite), and Ettringite. The results revealed that applying the toxicity characteristic leaching procedure to CFB fly ash renders it suitable for use in blended cement. At later curing ages (90 days), the pore volumes of both the OPC and the CFB-fly-ash-blended cement pastes (CFBFABCP) decreased as the curing time increased. A possible explanation is that C3S and C2S were consumed to form C-S-H gel, resulting in an increase in the Q1 and Q2 groups identified by 29Si Nuclear Magnetic Resonance (NMR) spectroscopy. Furthermore, the peak of the Q0 group decreased, but those of the Q1 and Q2 peaks increased with an increasing curing time. The pozzolanic activity of the CFBFABCP containing 10% CFB fly ash indicates that it is a suitable substitute for OPC in blended cement.


2014 ◽  
Vol 629-630 ◽  
pp. 306-313 ◽  
Author(s):  
Mao Chieh Chi ◽  
Ran Huang ◽  
Te Hsien Wu ◽  
Toun Chun Fou

Circulating fluidized bed combustion (CFBC) fly ash is a promising admixture for construction and building materials due to its pozzolanic activity and self-cementitious property. In this study, CFBC fly ash and coal-fired fly ash were used in Portland cement to investigate the pozzolanic and cementitious characteristics of CFBC fly ash and the properties of cement-based composites. Tests show that CFBC fly ash has the potential instead of cementing materials and as an alternative of pozzolan. In fresh specimens, the initial setting time of mortars increases with the increasing amount of cement replacement by CFBC fly ash and coal-fire fly ash. In harden specimens, adding CFBC fly ash to replace OPC reduces the compressive strength. Meanwhile, CFBC fly ash would results in a higher length change when adding over 30%. Based on the results, the amount of CFBC fly ash replacement cement was recommended to be limited below 20%.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


2017 ◽  
Vol 733 ◽  
pp. 85-88 ◽  
Author(s):  
Amir Fauzi ◽  
Mohd Fadhil Nuruddin ◽  
Ahmad B. Malkawi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Bashar S. Mohammed

Geopolymer system is new binding materials in concrete industry that is produced by the alkaline solution and materials rich in aluminosilicate such as fly ash. The effect of the alkaline solution to fly ash ratios of 0.3, 0.4 and 0.5 on mortar geopolymer properties was an issue in this study. The results showed that the higher alkaline solution to fly ash ratio improves the workability and brings a longer setting time, whereas the lower alkaline solution to fly ash ratio gains the significant compressive strength. It was a similar pattern with conventional mortar used ordinary Portland cement, which the compressive strength at 7 days was 85%-90% for 28 days compressive strength, whereas conventional mortar is only 65%-75%. This was due to the higher reactivity in geopolymer system that was faster than the pozzolanic reaction.


2013 ◽  
Vol 25 (10) ◽  
pp. 5675-5677
Author(s):  
Yan Li ◽  
Dao Sheng Sun ◽  
Xiu Sheng Wu ◽  
Ai Guo Wang ◽  
Wei Xu ◽  
...  

2009 ◽  
Vol 6 (1) ◽  
pp. 231-236 ◽  
Author(s):  
G. Sivakumar ◽  
K. Mohanraj ◽  
S. Barathan

In this paper, the hydration behaviour of ordinary portland cement (OPC) and fly ash blended cement (10, 25 and 40%) replaced by two different fly ashes (FA) were investigated. The samples were hydrated with distilled water (DW) in water to solid ratio 0:4 and its setting time and dielectric measurement are carried out. Results of the study found that the fly ash blended cement composites have slow hydration than OPC during early stages (up to 24 h).


2008 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Mohd Fadzil Arshad ◽  
Megat Azmi Megat Johari ◽  
Muhd Norhasri Muhd Sidek ◽  
Mazlee Mohd Noor

This paper presents the results of a laboratory study on the properties of Ternary Blended Cement (TBC) containing blends of ordinary Portland cement (OPC), Metakaolin (MK) and Fly Ash (FA). Analyses on the cementitious properties and engineering concrete properties containing TBC produced have been performed. The resulted was than compared with those of OPC and binary blended cementitious (BBC) systems containing OPC:MK and OPC:FA. In general, the results show that the inclusion of MK and FA in TBC alter the properties and performance of the cement paste and concrete to a certain degree as well as the resulting the TBC could potentially be used in the concrete construction industry.


Sign in / Sign up

Export Citation Format

Share Document