scholarly journals Finite Element Analysis Generates an Increasing Interest in Dental Research: A Bibliometric Study

2016 ◽  
Vol 10 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Abdoulaziz Diarra ◽  
Vagan Mushegyan ◽  
Adrien Naveau

Purpose:The purpose was to provide a longitudinal overview of published studies that use finite element analysis in dental research, by using the SCI-expanded database of Web of Science®(Thomson Reuters).Material and Methods:Eighty publications from 1999-2000 and 473 from 2009-2010 were retrieved. This literature grew faster than the overall dental literature. The number of publishing countries doubled. The main journals were American or English, and dealt with implantology. For the top 10 journals publishing dental finite element papers, the mean impact factor increased by 75% during the decade.Results:Finite elements generate an increasing interest from dental authors and publishers worldwide.

2012 ◽  
Vol 525-526 ◽  
pp. 93-96
Author(s):  
Xue Cheng Ping ◽  
Lin Leng ◽  
Si Hai Wu

A super wedge tip element for application to a bi-material wedge is develop utilizing the thermo-mechanical stress and displacement field solutions in which the singular parts are numerical solutions. Singular stresses near apex of an arbitrary bi-material wedge under mechanical and thermal loading can be obtained from the coupling between the super wedge tip element and conventional finite elements. The validity of this novel finite element method is established through existing asymptotic solutions and conventional detailed finite element analysis.


2014 ◽  
Vol 555 ◽  
pp. 549-554
Author(s):  
Sebastian Marian Zaharia

The purpose of this paper is to validate the accelerated testing methodology of a component from the field of aviation (supple platinum) using the standard calculation method and the analysis with finite elements. The specimens made out of supple platinum from the helicopter’s structure have been put through to accelerated experiments. Using the data resulted from the analysis with finite elements, the data resulted from resistance calculations and the experimental data obtained from the testing of specimens, a comparative study was realized between the specific strain and the normal stress that were obtained. From the results of this comparative study, it is obvious the fact that the method of analysis with finite elements is an efficient instrument to validate the experiments.


Author(s):  
Ajay Garg

Abstract Design and analysis of engineering components can be categorized under the theory of continuum mechanics, plates/shells or beams. Closed form solutions for determining deformations and stresses are available for simple structures with simple boundary conditions. In the cases of complex structures, boundary conditions and loads, analytical solutions are not readily available. Finite element analysis (FEA) can be performed to resolve the simulation barrier of these analytically indeterminate structures. Similar to analytical approach, FEA can simulate the components through solid, plate/shell or beam elements. Finite element analysis through 3-D solid elements is costly and may require time in weeks, which may not be at the disposal of an analyst. Axi-symmetric components and components with an infinite radius of curvature (flat surfaces), but with complex cross sections can be modeled by 2-D axi-symmetric and plate elements, respectively. Two dimensional finite elements require less time and hardware support than three-dimensional elements. Two development cases of successful application of 2-D finite elements instead of 3-D finite elements are discussed. Experimental and analytical verification of FEA results, and guidelines for checking finite element mesh discretization error are presented.


Author(s):  
O.V. Voloshko Assistant, S. P. Vysloukh Ph.D. Assoc. Prof.

The advantages of using computer modelling for the study of the detail’s elastic-deformed state during the process of its operation are given. It is proposed to use the method of finite elements for such researches. It is shown that FEMAP is an effective software environment based on finite element analysis. An example of using the finite element method for modelling the detail’s elastic state operating in conditions of alternating loads is given. Наведено переваги використання комп’ютерного моделювання для дослідження пружно-деформований стан деталі в процесі її експлуатації. Запропоновано для таких досліджень використовувати метод скінченних елементів. Показано, що ефективним програмним середовищем, яке базується на кінцево-елементному аналізі, є система FEMAP. Наведена приклад використання методу скінченних елементів для моделювання пружного стану деталі, що працює в умовах знакозмінних навантажень.


The scope of the present paper is concerned with the numerical prediction of the confined air flow characteristics and thermal convection patterns in sealed attic spaces in roofs with upper inverted V-shapes and horizontal suspended ceilings of conventional houses and buildings. For these isosceles triangular cavities, two relevant cases involve prescribed wall temperatures wherein the bottom base wall is cooled/heated and the upper two inclined walls are symmetrically heated/cooled during the summer and winter seasons. Based on finite element analysis, the COMSOL code is implemented to perform numerical solutions of the two-dimensional system of coupled NavierStokesBoussinesq and energy equations. The computational domain is made coincident with the physical domain to handle potential non-symmetric velocities and non-symmetric temperatures that may occur when exposed to vigorous air flows. The numerical solution via finite elements provides the two velocity fields u (x, y), v (x, y) and the temperature field T (x, y) for the confined air flows. Overall, the target design quantity is the mean wall heat fluxes w q varying with the attic aspect ratio and the temperature difference at two opposing walls. The predicted w q values match the experimental measurements for the two distinct cases related to summer and winter seasons. At the end, comprehensive correlation equations are constructed for the quantification of the mean Nusselt number in terms of the Grashof number and the attic aspect ratio, which could be used in building science research.


2021 ◽  
Author(s):  
Tao Tian ◽  
Han-yao Huang ◽  
Wei Wang ◽  
Bing Shi ◽  
Qian Zheng ◽  
...  

Abstract Background: The objective was to clarify the effect of alveolar cleft bone graft on maxillofacial biomechanical stabilities, the key areas when bone grafting and in which should be supplemented with bone graft once bone resorption occurred in UCCLP (Unilateral Complete Cleft Lip and Palate).Methods: Maxillofacial CAD (Computer Aided Design) models of non-bone graft and full maxilla cleft, full alveolar cleft bone graft, bone graft in other sites of the alveolar cleft were acquired by processing the UCCLP maxillofacial CT data in three-dimensional modeling softwares. The maxillofacial bone equivalent (EQV) stresses and bone suture EQV strains under occlusal states were obtained in the finite element analysis software.Results: Under corresponding occlusal states, the EQV stresses of maxilla, pterygoid process of sphenoid bone on the corresponding side and anterior alveolar arch on the non-cleft side were higher than other maxillofacial bones, the EQV strains of nasomaxillary, zygomaticomaxillary and pterygomaxillary suture on the corresponding side were higher than other maxillofacial bone sutures. The mean EQV strains of nasal raphe, the maximum EQV stresses of posterior alveolar arch on the non-cleft side, the mean and maximum EQV strains of nasomaxillary suture on the non-cleft side in full alveolar cleft bone graft model were all significantly lower than those in non-bone graft model. The mean EQV stresses of bilateral anterior alveolar arches, the maximum EQV stresses of maxilla and its alveolar arch on the cleft side in the model with bone graft in lower 1/3 of the alveolar cleft were significantly higher than those in full alveolar cleft bone graft model.Conclusions: For UCCLP, bilateral maxillae, pterygoid processes of sphenoid bones and nasomaxillary, zygomaticomaxillary, pterygomaxillary sutures, anterior alveolar arch on the non-cleft side are the main occlusal load bearing structures before and after alveolar cleft bone graft. Alveolar cleft bone graft mainly affects biomechanical stabilities of nasal raphe and posterior alveolar arch, nasomaxillary suture on the non-cleft side. The areas near nasal floor and in the middle of the alveolar cleft are the key sites when bone grafting, and should be supplemented with bone graft when the bone resorbed in these areas.


Sign in / Sign up

Export Citation Format

Share Document