scholarly journals A Study of Smart Grid Effects on Electric Vehicle Management Considering the Change of the Power Capacity Mix

2018 ◽  
Vol 12 (1) ◽  
pp. 215-229
Author(s):  
Chankook Park

Background: To understand the Electric Vehicle (EV) management effects deeply using Smart Grids (SGs) in the electric power sector, it is necessary to examine supply specifics such as the generation mix, generation costs, and CO2 emissions as well as the demand sector including peak load. This study attempts to comprehensively examine the changes in power supply and demand their effects in accordance with the degree of SG utilization, based on a scenario for the projection of EV roll-out in South Korea. Objectives: This study considers the change of the generation capacity mix as well as the change of power generation mix using the WASP model for the analysis of SG effects on EV management. In the scenario of the Korean government's EV deployment, this study has confirmed how electric power demand changes according to the degree of smart grid utilization. In addition, the WASP model has been used to examine not only the power generation mix but also the change in the installed capacity. Result: As a result, if the share of cost-effective and clean power generation sources is below the minimum load, the unit cost and CO2 emission could not be reduced together even though SGs are used to manage EVs. Conclusion: Increasing the share of power generation from clean energy sources to a level higher than that of the minimum load will allow EVs to become an eco-friendly means of transportation.

2019 ◽  
Vol 8 (3) ◽  
pp. 4628-4632

Smart grids ensure the energy conservation and cost effective energy management that encourage the clean energy environment. . The transformation of power grid involves implementation of contemporary measuring equipment’s and communication technologies for effective energy data transfer and management. The smart grids do have their benefits but they also come with bottlenecks pertaining to the areas of SM (Smart Meters), information and communication technology (ICT) and in unification of RES (Renewable Energy Source). This paper provides a survey of challenges related to these bottlenecks. It also throws light on the advancement in communication technology which is helpful to induce reliability and efficacy in the smart grids (SG). A complete overview of the same including its limitations in the current scenario is also provided. The survey on the advanced communication technologies, security on the utility and consumers smart grid devices, turns the smart grid as the better solution for the future energy demand.


2022 ◽  
pp. 1361-1385
Author(s):  
Amam Hossain Bagdadee ◽  
Li Zhang

The review this article conducts is an extensive analysis of the concept of a smart grid framework with the most sophisticated smart grid innovation and some basic information about smart grid soundness. Smart grids as a new scheme for energy and a future generation framework encourages the expansion of information and progress. The smart grid framework concord will potentially take years. In this article, the focus is on developing smart networks within the framework of electric power systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yuling Li ◽  
Xiaoying Wang ◽  
Peicong Luo

Modern smart grids have proposed a series of demand response (DR) programs and encourage users to participate in them with the purpose of maintaining reliability and efficiency so as to respond to the sustainable development of demand-side management. As a large load of the smart grid, a datacenter could be regarded as a potential demand response participant. Encouraging datacenters to participate in demand response programs can help the grid to achieve better load balancing effect, while the datacenter can also reduce its own power consumption so as to save electricity costs. In this paper, we designed a demand response participation strategy based on two-stage decisions to reduce the total cost of the datacenter while considering the DR requirements of the grid. The first stage determines whether to participate in demand response by predicting real-time electricity prices of the power grid and incentive information will be sent to encourage users to participate in the program to help shave the peak load. In the second stage, the datacenter interacts with its users by allowing users to submit bid information by reverse auction. Then, the datacenter selects the tasks of the winning users to postpone processing them with awards. Experimental results show that the proposed strategy could help the datacenter to reduce its cost and effectively meet the demand response requirements of the smart grid at the same time.


2019 ◽  
Vol 8 (4) ◽  
pp. 105-126
Author(s):  
Amam Hossain Bagdadee ◽  
Li Zhang

The review this article conducts is an extensive analysis of the concept of a smart grid framework with the most sophisticated smart grid innovation and some basic information about smart grid soundness. Smart grids as a new scheme for energy and a future generation framework encourages the expansion of information and progress. The smart grid framework concord will potentially take years. In this article, the focus is on developing smart networks within the framework of electric power systems.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2472 ◽  
Author(s):  
Changyu Zhou ◽  
Guohe Huang ◽  
Jiapei Chen

In this study, a type-2 fuzzy chance-constrained fractional integrated programming (T2FCFP) approach is developed for the planning of sustainable management in an electric power system (EPS) under complex uncertainties. Through simultaneously coupling mixed-integer linear programming (MILP), chance-constrained stochastic programming (CCSP), and type-2 fuzzy mathematical programming (T2FMP) techniques into a fractional programming (FP) framework, T2FCFP can tackle dual objective problems of uncertain parameters with both type-2 fuzzy characteristics and stochastic effectively and enhance the robustness of the obtained decisions. T2FCFP has been applied to a case study of a typical electric power system planning to demonstrate these advantages, where issues of clean energy utilization, air-pollutant emissions mitigation, mix ratio of renewable energy power generation in the entire energy supply, and the displacement efficiency of electricity generation technologies by renewable energy are incorporated within the modeling formulation. The suggested optimal alternative that can produce the desirable sustainable schemes with a maximized share of clean energy power generation has been generated. The results obtained can be used to conduct desired energy/electricity allocation and help decision-makers make suitable decisions under different input scenarios.


Author(s):  
Siavash Ebrahimi ◽  
Jack Brouwer

The State of California has adopted a deep greenhouse gas emissions reduction target of 80 percent below 1990 levels by 2050, but decarbonizing the power generation sector cannot lead to such aggressive emissions reductions by itself since only 21 percent of total statewide GHG emissions originate from power generation. Therefore, widespread electrification, i.e., switching direct fossil fuel use to electricity, along with smart grid deployment, is essential for meeting deep emissions reduction targets. In this study, the load-balancing and emission impacts of electrifying end-use energy sectors while decarbonizing power generation, and deploying smart-grid technologies are analyzed using detailed modeling of infrastructure, feedstocks and economic dispatch of the electric grid. In the most comprehensive scenario, all end-use energy sectors are partly electrified by 2030 via replacing gas-fired end-uses with highly efficient electric technologies. The electric power generation sector is decarbonized through installing higher levels of renewable power meeting nearly 50 percent of total California electric energy demand in 2030. Various smart grid technologies including battery energy storage, demand response, and smart electric vehicle charging are implemented in the end-use sectors in order to accommodate and complement higher levels of renewable power resources. It is found that decarbonizing the electric power generation without electrifying end-use sectors increases CO2 emissions by 3.1 percent, while end-use electrification alongside utility scale and distributed renewable resource integration and smart grid technology implementation can yield up to a 29 percent reduction in CO2 emissions in 2030 compared to 1990 levels.


2014 ◽  
Author(s):  
Olumide Bello ◽  
Landon Onyebueke

This paper presents an approach to modeling of renewable energy integration into Smart Grid for Electric Vehicle charging applications. Integration of renewable energy sources to smart grid is not only the key to smart Electric Vehicle charging but also the most efficient way to manage the distributed energy resources. It enables the ability to control, ease the peak load impacts, and protect distribution network components from being overloaded by Electric Vehicles. Thus, the electricity generation and consumption is managed in more cost effective way. The developed model is a grid connected solar-assisted Electric Vehicle charging station, with battery bank. It generates electricity using solar photovoltaic (PV) arrays to augment the electricity used to charge the electric vehicles. The battery bank stores electricity from the grid and discharges the stored energy during periods of peak charging demand. Optimization of the model was done by developing a program written in Visual Basic 2012. The computational results show the economic advantages of this model as well as the anticipated benefits of the smart grid for reduced peak loads, and increased efficiency.


2016 ◽  
Vol 6 (1) ◽  
pp. 51-76
Author(s):  
Zoulikha Bendiabdellah ◽  
Hichem Sedjelmaci ◽  
Mohamed Attia ◽  
Sidi Mohammed Senouci ◽  
Mohammed Feham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document