scholarly journals Smart Grid on Issues and Challenges

2019 ◽  
Vol 8 (3) ◽  
pp. 4628-4632

Smart grids ensure the energy conservation and cost effective energy management that encourage the clean energy environment. . The transformation of power grid involves implementation of contemporary measuring equipment’s and communication technologies for effective energy data transfer and management. The smart grids do have their benefits but they also come with bottlenecks pertaining to the areas of SM (Smart Meters), information and communication technology (ICT) and in unification of RES (Renewable Energy Source). This paper provides a survey of challenges related to these bottlenecks. It also throws light on the advancement in communication technology which is helpful to induce reliability and efficacy in the smart grids (SG). A complete overview of the same including its limitations in the current scenario is also provided. The survey on the advanced communication technologies, security on the utility and consumers smart grid devices, turns the smart grid as the better solution for the future energy demand.

2018 ◽  
Vol 12 (1) ◽  
pp. 215-229
Author(s):  
Chankook Park

Background: To understand the Electric Vehicle (EV) management effects deeply using Smart Grids (SGs) in the electric power sector, it is necessary to examine supply specifics such as the generation mix, generation costs, and CO2 emissions as well as the demand sector including peak load. This study attempts to comprehensively examine the changes in power supply and demand their effects in accordance with the degree of SG utilization, based on a scenario for the projection of EV roll-out in South Korea. Objectives: This study considers the change of the generation capacity mix as well as the change of power generation mix using the WASP model for the analysis of SG effects on EV management. In the scenario of the Korean government's EV deployment, this study has confirmed how electric power demand changes according to the degree of smart grid utilization. In addition, the WASP model has been used to examine not only the power generation mix but also the change in the installed capacity. Result: As a result, if the share of cost-effective and clean power generation sources is below the minimum load, the unit cost and CO2 emission could not be reduced together even though SGs are used to manage EVs. Conclusion: Increasing the share of power generation from clean energy sources to a level higher than that of the minimum load will allow EVs to become an eco-friendly means of transportation.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3776-3783

A Smart Grid is the advancement for power matrix with utilization of correspondence innovation with number of powerful meters which are interconnected and two-way data / information flows and has the main goals is to the active participants of consumers to improve quality and reliability of energy usage as for reducing energy consumption and provide increasing reliability as communication between smart meters and consumers. Basically, Smart Grid is working with distributed system manner, and create a network infrastructure as Advanced Metering Infrastructure (AMI) with number of different smart meter. This AMI network includes NAN (Neighbourhood Area Network), have connected with number of smart meters (as wired / wireless) connections with repeater / router as commonly name as Gateway collector which collets the all the consumers information’s and send to the Utility centre. The flow of information as energy usages and power in smart grids is bidirectional which is controlled with the help of software and supporting hardware. Here, with using of Optimized Network Engineering Tools (OPNET) Modeler is one of the most dominant simulation tools for the analysis of communication networks. In this paper, the number of smart meters is connected and create an AMI networks were developed with network parameters which related to different communication as wireless for the compute the different network parameters with respect to the time where data transfer and DDoS attack to the network. The security aspect as detect the DDoS attack to the AMI network and provide a guideline to the future of AMI network where escape strange challenges faced by Distribution companies. Here, in this paper the progressed metering foundation (AMI), which is one of the savvy framework's application regions where make a proving ground and arrangement in the OPNET for assessed the exhibition and power the board model for the framework


Author(s):  
Surender Reddy Salkuti

This paper presents an overview of the performance analysis methods available for the Smart Grid (SG). Increased energy demand, volatile energy costs, uncertain power generation from the renewable energy resources (RERs), electric vehicles, and environmental concerns are coming together to change the nature of the traditional power grid. Many utility companies are now moving towards the smart metering and the Smart Grid solutions to address these challenges. Smart Grid is inclusive of advance tools, latest communication technologies and storage devices, which makes the Smart Grid vulnerable and complex. This paper aims to review the performance analysis of Smart Grid. It also presents various models of the Smart Grid performance indices. It presents the methods available for stability, reliability and resilience assessment in Smart Grid. It also describes the implementation approach using the real time tools and techniques.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2911
Author(s):  
Hsi-Chou Hsu ◽  
Shi-Ren Zhuang ◽  
Yung-Fa Huang

Finding a more efficient use of energy is an important problem that needs attention. Compared with the traditional power grid, a smart grid can monitor users’ electricity situation and electricity consumption instantly. However, it involves many problems of deploying network equipment. Consequently, it is vital to promote smart grids by collecting data from smart meters efficiently and keeping costs low. In this article, we propose a two-stage method of data collection for smart grids. The main contribution of this paper is to lower the number of data aggregation points (DAPs) so that the cost can be reduced. By using the K-means method, an entire smart grid can be divided into many smaller parts. In addition, the needs of transmitting and receiving data in the entire smart grid can be met by installing the least number of DAPs. Finally, the simulations show that the proposed two-stage method of data collection can use fewer DAPs to collect data than other methods which use one-stage methods, so the proposed scheme is more cost-effective.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4649
Author(s):  
İsmail Hakkı ÇAVDAR ◽  
Vahit FERYAD

One of the basic conditions for the successful implementation of energy demand-side management (EDM) in smart grids is the monitoring of different loads with an electrical load monitoring system. Energy and sustainability concerns present a multitude of issues that can be addressed using approaches of data mining and machine learning. However, resolving such problems due to the lack of publicly available datasets is cumbersome. In this study, we first designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset (TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with sensors and Node-Red software installations were established to collect data in the research. In the context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify household appliances according to TEAD data. A highly accurate supervised ED is introduced, which was designed to raise awareness to customers and generate feedback by demand without the need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep learning (DL) architecture based on bidirectional encoder representations from transformers (BERT). In this paper, an improved training function was designed specifically for tuning of NILM neural networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly, we evaluated the TEAD dataset using BERT-NILM training.


Author(s):  
Adnan Rashid ◽  
Osman Hasan

Smart grids provide a digital upgradation of the conventional power grids by alleviating the power outages and voltage sags that occur due to their inefficient communication technologies and systems. They mainly tend to strengthen the efficiency, performance, and reliability of the traditional grids by establishing a trusted communication link between their different components through routing protocols. The conventional methods, i.e., the computer-based simulations and net testing, for analyzing these routing network protocols are error-prone and thus cannot be relied upon while analyzing the safety-critical smart grid systems. Formal methods can cater for the above-mentioned inaccuracies and thus can be very beneficial in analyzing communication protocols used in smart grids. In order to demonstrate the utilization and effectiveness of formal methods in analyzing smart grid routing protocols, we use the UPPAAL model checker to formally model the ZigBee-based routing protocol. We also verify some of its properties, such as, liveness, collision avoidance and deadlock freeness.


Author(s):  
Yona Lopes ◽  
Natalia Castro Fernandes ◽  
Tiago Bornia de Castro ◽  
Vitor dos Santos Farias ◽  
Julia Drummond Noce ◽  
...  

Advances in smart grids and in communication networks allow the development of an interconnected system where information arising from different sources helps building a more reliable electrical network. Nevertheless, this interconnected system also brings new security threats. In the past, communication networks for electrical systems were restrained to closed and secure areas, which guaranteed network physical security. Due to the integration with smart meters, clouds, and other information sources, physical security to network access is no longer available, which may compromise the electrical system. Besides smart grids bring a huge growth in data volume, which must be managed. In order to achieve a successful smart grid deployment, robust network communication to provide automation among devices is necessary. Therefore, outages caused by passive or active attacks become a real threat. This chapter describes the main architecture flaws that make the system vulnerable to attacks for creating energy disruptions, stealing energy, and breaking privacy.


2019 ◽  
Vol 11 (10) ◽  
pp. 216 ◽  
Author(s):  
Mehmet Ali Ertürk ◽  
Muhammed Ali Aydın ◽  
Muhammet Talha Büyükakkaşlar ◽  
Hayrettin Evirgen

Internet of Things (IoT) expansion led the market to find alternative communication technologies since existing protocols are insufficient in terms of coverage, energy consumption to fit IoT needs. Low Power Wide Area Networks (LPWAN) emerged as an alternative cost-effective communication technology for the IoT market. LoRaWAN is an open LPWAN standard developed by LoRa Alliance and has key features i.e., low energy consumption, long-range communication, builtin security, GPS-free positioning. In this paper, we will introduce LoRaWAN technology, the state of art studies in the literature and provide open opportunities.


Author(s):  
Philip Odonkor ◽  
Kemper Lewis ◽  
Jin Wen ◽  
Teresa Wu

Traditionally viewed as mere energy consumers, buildings have in recent years adapted, capitalizing on smart grid technologies and distributed energy resources to not only efficiently use energy, but to also output energy. This has led to the development of net-zero energy buildings, a concept which encapsulates the synergy of energy efficient buildings, smart grids, and renewable energy utilization to reach a balanced energy budget over an annual cycle. This work looks to further expand on this idea, moving beyond just individual buildings and considering net-zero at a community scale. We hypothesize that applying net-zero concepts to building communities, also known as building clusters, instead of individual buildings will result in cost effective building systems which in turn will be resilient to power disruption. To this end, this paper develops an intelligent energy optimization algorithm for demand side energy management, taking into account a multitude of factors affecting cost including comfort, energy price, Heating, Ventilation, and Air Conditioning (HVAC) system, energy storage, weather, and on-site renewable resources. A bi-level operation decision framework is presented to study the energy tradeoffs within the building cluster, with individual building energy optimization on one level and an overall net-zero energy optimization handled on the next level. The experimental results demonstrate that the proposed approach is capable of significantly shifting demand, and when viable, reducing the total energy demand within net-zero building clusters. Furthermore, the optimization framework is capable of deriving Pareto solutions for the cluster which provide valuable insight for determining suitable energy strategies.


Author(s):  
Jennifer Batamuliza ◽  
Damien Hanyurwimfura

Smart Grid (SG) is a modern digital metering system that was introduced by researchers to take over the traditional electricity infrastructure that existed before by gathering and putting in use the data generated by smart meters and ensure efficiency and reliability in the two directional flow of electricity and data for both the service providers and smart meters. Leakage of customers’ identity causes inconvenience to the customer because he is exposed to theft in his household. Secure anonymous key distribution scheme for SG has been proposed as solution to secure data transfer between service provider and customer. Existing secure anonymous key distribution scheme for SG brings challenge such as being inefficient, having traceability issues and do not stop replay attack hence vulnerable to DoS attacks. In this paper a Secure efficient anonymous identity-based with bilateral protocol is proposed to address the weakness in existing anonymous key distribution schemes. , With this protocol, both smart meter and service provider in (SG) identify each other anonymously in efficient way achieving un-traceability and restisting Replay and DoS attack.


Sign in / Sign up

Export Citation Format

Share Document