scholarly journals The Effects of Density Difference on Displacement Interface in Eccentric Annulus During Horizontal Well Cementing

2013 ◽  
Vol 6 (1) ◽  
pp. 79-87
Author(s):  
Feng Fuping
2016 ◽  
Vol 38 (3) ◽  
pp. 193-204
Author(s):  
Vu Van Truong

In this paper, direct numerical simulations are presented for solidification with the effects of density difference between the solid and liquid phases. A front-tracking method is used. The solidification front, i.e. the solid-liquid interface separating solid and liquid, is represented by connected elements that move on a rectangular and stationary grid. The Navier-Stokes equations are solved by a projection method on the entire domain including the solid phase. An indicator function reconstructed from the front information is used to set the velocities in the solid phase to zero, and thus to enforce the no-slip condition at the interface. The method is validated through comparisons with exact solutions for one- and two-dimensional problems. The method is then used to simulate the solidification processes with the effects of volume change due to density difference


2019 ◽  
Vol 133 ◽  
pp. 924-936 ◽  
Author(s):  
Mengqi Wu ◽  
Nan Gui ◽  
Hao Wu ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1654
Author(s):  
Yasaman Foolad ◽  
Majid Bizhani ◽  
Ian A. Frigaard

This paper presents a series of experiments focused on the displacement of viscoplastic fluids by various Newtonian and non-Newtonian fluids from a long horizontal, eccentric annulus. The flow regimes range from high Reynolds number laminar regimes through to fully turbulent. These experiments represent the primary cementing operation in a horizontal well. The main objective of our experiments is to gain insight into the role of the flow regime in the fluid-fluid displacement flows of relevance to primary cementing. We study strongly eccentric annuli and displaced fluids with a significant yield stress, i.e., those scenarios where a mud channel is most likely to persist. For fully eccentric annuli, the displacements are uniformly poor, regardless of regime. This improves for an eccentricity of 0.7. However, at these large eccentricities that are typical of horizontal well cementing, the displacement is generally poor and involves a rapid “breakthrough” advance along the wide upper side of the annulus followed only by a much slower removal of the residual fluids. This dynamic renders contact time estimates meaningless. We conclude that some of the simple statements/preferences widely employed in industry do not necessarily apply for all design scenarios. Instead, a detailed study of the fluids involved and the specification of the operational constraints is needed to yield improved displacement quality.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Hans Joakim Skadsem ◽  
Steinar Kragset

Abstract Casing strings and liners are important subsurface structural components in petroleum and in geothermal wells. After the casing string has been run in hole, it is cemented to the formation by pumping a sequence of spacer fluids and cement slurry into the annulus outside the string. Spacer fluids are usually pumped ahead of the cement slurry to displace the drilling fluid from the annulus that is to be cemented and thereby avoid contamination of the cement slurry. Fluid displacements are governed by inertia, buoyancy, and viscosity effects, in addition to being strongly influenced by the annular geometry. Poor centralization of the casing or irregularities such as washouts can influence the displacement flows both locally and over long axial distances. We present three-dimensional numerical simulations of the displacement flow involving two viscoplastic fluids in the vicinity of a symmetric local hole enlargement. We focus on laminar flow regimes in the regular part of the annulus and investigate how the volumetric flowrate and the mass density difference between the fluids affect the displacement efficiency in the regular and the irregular parts of the annulus. This study considers viscoplastic displacement flows in a near-vertical, irregular annulus and is an extension of a previous publication that focused on a near-horizontal annulus. We contextualize our simulations by comparison to industry guidelines for effective and steady laminar displacements in the regular, near-vertical annulus. Here, eccentricity favors flow in the wider sector of the annulus, while a positive density difference between the fluids generates secondary, azimuthal flow toward the narrow side of the annulus. In the enlarged and irregular section, both the axial bulk velocity and casing eccentricity decrease sharply and buoyancy becomes more pronounced compared to in the regular annulus. We quantify and discuss the effects of local hole enlargements on displacement efficiencies. Simulations of cementing flows can aid in optimizing fluid properties and pump rates, including when the wellbore has suspected or confirmed zones of irregular geometries.


Sign in / Sign up

Export Citation Format

Share Document