Elastic Bilayer Vesicles of Flurbiprofen for Transdermal Delivery: Development and In-Vitro Characterization

2020 ◽  
Vol 10 (1) ◽  
pp. 54-60
Author(s):  
Rashmi Sareen ◽  
Nitin Jain

Objective: The purpose of the present study was to develop a novel elastic bilayer vesicle entrapped with Flurbiprofen (FLB) for transdermal use to avoid adverse effect associated with oral administration of the drug. Encapsulation of drug in vesicle prolongs the existence of the drug in the systemic circulation and thus enhances penetration into the target site and reduces toxicity. Method: Niosomes were prepared using surfactants (span 40 and span 60) and cholesterol in the molar ratio of 1:1, 2:1, 3:1 and 3:2. Vesicles prepared by thin film hydration method were characterized for morphology, vesicle size and zeta potential, thermal analysis and Entrapment Efficiency (EE). Results: Results revealed that the EE and size of niosomes were influenced by surfactant type and cholesterol ratio. F8 (span 60: cholesterol in 3:2) exhibited the highest encapsulation of FLB (76.77 ± 0.55) with vesicle size of 154 ± 2.96 nm and Polydispersity Index (PDI) of 0.09. The optimized formulation F8 was selected for incorporation into the gel. Niosomal gel was evaluated for homogeneity, pH, spreadability and in-vitro drug release. Conclusion: All the parameters of niosomal gel were found to be satisfactory and in-vitro release study revealed prolonged and complete release of entrapped FLB (93.23±0.65%) in comparison to FLB hydrogel (42.65±0.29%). The results suggested that niosomes may serve as promising vehicles for the transdermal delivery of FLB.

2018 ◽  
Vol 10 (2) ◽  
pp. 41
Author(s):  
Ahmed M. Samy ◽  
Afaf A. Ramadan ◽  
Amal S.m. Abu El-enin ◽  
Yasmin I. M. Mortagi

Objective: The aim of the present study was to obtain an optimized formula of itraconazole (ITC) proniosomes using Box Behnken design.Methods: Itraconazole proniosomes were prepared using span 60 and/or brij 35 as surfactants, cholesterol and lecithin as a penetration enhancer by slurry method. Various trials have been carried out for investigation of proniosomes. Parameters such as entrapment efficiency (EE%), in vitro drug release, zeta potential, vesicle size and Transmission Electron Microscope were assessed for evaluation of proniosomes.Results: Entrapment efficiency (EE%) was found to be between 78.56% and 95.46%. The release profile of itraconazole proniosomes occurred in two distinct phases, an initial phase for about 8 h, followed by a slow phase for 16 h. The release pattern shown by these formulations was Higuchi diffusion controlled mechanism. The zeta potential values for all itraconazole proniosomes were in the range of-21.71 to-34.53 mV which confirms their stability. All itraconazoleproniosomes formula was found to be nano-sized and were appeared to be spherical in shape with sharp boundaries. One way analysis of variance (ANOVA) study showed that HLB (X1) had the main effects on most responses (Y).Conclusion: Box behnken design facilitates optimization of the formulation ingredients on entrapment efficiency, in vitro release of itraconazole proniosomes, zeta potential and vesicle size. Finally, an optimum level of factors was provided by the optimization process.


2017 ◽  
Vol 9 (6) ◽  
pp. 100 ◽  
Author(s):  
Mona G. Arafa ◽  
Bassam M. Ayoub

Objective: The present work was aimed to prepare niosomes entrapping salbutamol sulphate (SS) using reversed phase evaporation method (REV).Methods: Niosomes were prepared by mixing span 60 and cholesterol in 1:1 molar ratio in chloroform, SS in water was then added to organic phase to form niosomal SS. Formulations after evaporation of chloroform, freeze centrifuged then lyophilized, were evaluated for particles size, polydispersity index (Pdi), zeta-potential, morphology, entrapment efficiency (EE%) and in vitro release. For pulmonary delivery; metered dose inhalers (MDI) were prepared by suspending SS niosomes equivalent to 20 mg SS in hydrofluoroalkane (HFA). The metered valve was investigated for leakage rate, the total number of puffs/canister, weight/puff, dose uniformity and particle size.Results: The results showed spherical niosomes with 400-451 nm particles that entrapped 66.19% of SS. 76.54±0.132% SS release from niosomes that showed a controlled release profile for 8h. The leakage test was not exceeding 4 mg/3 d, the number of puffs were up to 200puffs/canister, the dose delivered/puff was 0.1 mg and 0.64-4.51μm niosomal aerosol.Conclusion: The results indicate an encouraging strategy to formulate a controlled drug delivery by entrapping (SS) in niosomes which could be packaged into (MDI) that met the requirements of (USP) aerosols guidelines which offering a novel approach to respiratory delivery.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (07) ◽  
pp. 33-35
Author(s):  
A Dubey ◽  
◽  
P Prabhu ◽  
N Nair ◽  
K Beladiya ◽  
...  

The aim of the present investigation was to develop a combination of timolol maleate and travoprost niosomal in situ gelling system for the treatment of glaucoma. Niosomes were prepared by thin film hydration technique using rotary flash evaporator. A 32 factorial design was utilized to study the effect of the molar ratio of Span 60 (X1) and cholesterol (X2) on vesicle size, drug entrapment efficiency and in vitro release study. On the basis of vesicle size, maximum entrapment efficiency and in vitro release of drug, best formulations were selected for the preparation of niosomal in situ gel (Drop). On the basis of gelling time and viscosity, optimized ratio of the polymers was selected for the desired preparation. Selected niosomal batches were dispersed in carbopol 940 and HPMC K4M polymer solution (combination IF6) to form in situ gel niosomal formulations (Drop). The gelling time of the niosomal in situ gel (NIF1) was found to be the best (+++) and the viscosity was found to be 1190 cP. Zeta potential, average size analysis, polydispersibility index value was found to be -45.1 mV, 256.5 nm, 0.228 respectively. In vitro drug release was found to be within the range of 50.23 ± 0.54 to 60.23 ± 0.33% over the period of 6 h. IOP lowering activity of best formulation (NIF1) showed more significant and sustained effect than the marketed eye drops. Best formulation (NIF1) was found to be stable, sterile, non irritant and isotonic. Hence niosomal in situ gelling combination system may have the potential of bringing better application than the conventional ocular therapy with improved ocular bioavailability and increased patient compliance.


Author(s):  
EMAN A. MAZYED ◽  
SHERIN ZAKARIA

Objective: The present investigation aims to formulate and evaluate proniosomes of clopidogrel bisulphate for improving its dissolution characteristics. Methods: The slurry method was used for the preparation of proniosomes of clopidogrel using cholesterol, sorbitan monostearate (Span 60) and maltodextrin as a carrier. Clopidogrel proniosomes were evaluated for their entrapment efficiency and in vitro drug release. The best formula (F1) that achieved maximum drug release was further evaluated by measurement of the angle of repose, morphological examination, determination of vesicle size, determination of zeta potential, Fourier transform infrared spectroscopy and differential thermal analysis. The in vivo behavior of the selected proniosomal formula (F1) was studied by measuring the antiplatelet activity in adult male mice. Results: The entrapment efficiency of clopidogrel proniosomes was in the range of 83.04±1.99 to 90.14±0.30. % drug released from proniosomal formulations was in the range of 79.73±0.35 to 97.70±1.10 % within 4 h. Clopidogrel proniosomes significantly enhanced the in vitro release of clopidogrel compared with the plain drug that achieved 61.77±2.22 % drug release. F1 significantly (p ≤ 0.001) increased the bleeding time and bleeding volume and significantly (p ≤ 0.05) prolonged prothrombin time and decreased prothrombin activity and increased the international normalized ratio (INR) compared to plain clopidogrel. Conclusion: The present investigation introduced proniosomes as a promising carrier for clopidogrel that could enhance its dissolution and pharmacological effect.


2018 ◽  
Vol 6 (5) ◽  
pp. 71-75
Author(s):  
Paninder Kaur ◽  
J.S Dua ◽  
D.N Prasad

ABSTRACT   In recent years, treatment of infectious disease through Novel Drug delivery system (NDDS) has undergone a revolutionary shift. Niosomes are a Novel Drug Delivery system which has potential application to treat infectious disease topically. Niosomes are non-ionic surfactant vesicles, in which medication is encapsulated in a vesicle for controlled drug release. Ketoconazole niosomes were prepared by using Cholesterol, Span 60/ Span 40 as surfactants, chloroform, and diethyl ether using rotary vacuum evaporator method. Formulation was then evaluated for particle size, drug content, entrapment efficiency, and in-vitro drug release studies. The Entrapment efficiency and drug content were calculated at 225nm using UV spectrophotometer. The drug content was found to be 70.37% for Span 40 and 72.81% for Span 60.The percentage of drug entrapment in niosomes was 60.3 % for Span 40 and 62.21 % for Span 60. FT-IR studies for niosomes containing Span 40 shows -CH stretching (Aliphatic) at 2891 cm-1and2925 cm-1 for niosomes containing Span 60. Ketoconazole niosomal gel was prepared using Carbopol 940, glycerol, Triethanolamine and distilled water. Evaluation of niosomal gel was determined by Physical appearance, pH, viscosity, drug content, entrapment efficiency and In-vitro diffusion studies.The percentage of the drug release from the niosomal gel was found to be 40.78 % for Span 40 and 33.75% for Span 60 . This delivery system is cost effective and simple to prepare as only the prepared gel of niosomes was introduced in Rotary vacuum evaporator for solvent evaporation.    


2018 ◽  
Vol 10 (5) ◽  
pp. 66
Author(s):  
Ameerah A. Radhi

Objective: The objective of the present study was to formulate niosomal formulations of benazepril hydrochloride in an attempt to overcome the hurdles associated with itʼs poor oral absorption.Methods: Nine formulations were prepared with various ratios of sorbitan monostearate (span 60), sorbitan monopalmitate (span 40) and polyoxyethylene 2 stearyl ether (brij 72) as non-ionic surfactants, cholesterol as a stabilizing agent and soya lecithin as a charge imparting agent. Then, they were characterized for vesicle size, polydispersity (PDI), entrapment efficiency (EE %), release profile, zeta (ζ) potential and transmission electron microscopy (TEM).Results: Niosomal formulations exhibited an efficient entrapment range between (80.4-97.8) percent, vesicles size analyses revealed the formation of homogenously dispersed vesicles having a size range of (3.9±1.7-8.72±4.4) micrometers. The in vitro release studies revealed that all formulations displayed sustained release in comparison with the pure drug. Formulations prepared with span 60 and span 40 possessed adequate stability according to zeta potential analysis, whereas brij 72 failed the test and possessed inadequate zeta potential range. TEM images of the optimized formulations (F7 and F8) have confirmed the formation of vesicles with spherical shapes.Conclusion: Based on the study results, niosomal formulations seem to be attractive alternatives to conventional delivery for benazepril hydrochloride.


2019 ◽  
Vol 10 (2) ◽  
pp. 874-882
Author(s):  
Vidya Viswanad ◽  
Anju PG ◽  
Gopika S Kumar ◽  
Sivapriya G Nair

The target of the study was the development and in vitro characterisation of an effective ethosomal formulation of clotrimazole and to the performance of the formulation was investigated under different preparation conditions.  The EE and from 9 formulations, the optimisation was done on the basis of its results which considering the concentration of lecithin and ethanol as the two factors and EE and in vitro release as their responses. The optimization was done on the basis of its results which considering the concentration of lecithin and ethanol as the two factors and EE and in vitro release as their responses.   F6 formulation gained a very good release of drug and highest entrapment efficiency of 93.203%. The results of permeation flux were obtained in the order of MLVs > ESUVs > SSUVs > LUVs.  This study gives an idea about the vesicles structure and the size, the technique used, the drug EE and the permeation rate. They were taking the above factors into consideration results in improving clinical effectiveness in transdermal delivery of an ethosomal formulation of clotrimazole.


Author(s):  
ANKITA TIWARI ◽  
SANJAY K. JAIN

Objective: The present investigation aimed to develop and characterize Eudragit S-100 coated alginate beads bearing oxaliplatin loaded liposomes for colon-specific drug delivery. Methods: Liposomes were formulated by the thin-film hydration method. The process and formulation variables were optimized by Box-Behnken design (BBD) with the help of Design-Expert® Software. Three independent variables taken were HSPC: Chol molar ratio (X1), hydration time (X2), and sonication time (X3). The response variables selected were entrapment efficiency of oxaliplatin, polydispersity index, and vesicle size. Results: The liposomes possessed an average vesicle size of 110.1±2.8 nm, PDI 0.096±0.3, zeta potential of-6.70±1.4 mV, and entrapment efficiency of 27.65%. The beads were characterized for their size, in vitro drug release, and swelling index. The degree of swelling of the beads was found to be 2.3 fold higher at pH 7.4 than at pH 1.2. The in vitro drug release depicted a sustained drug release in 48 h. Conclusion: The outcomes of the study proposed that the developed system can be effectively used for site-specific drug delivery to the colon via the oral route.


Author(s):  
Chandani Makvana ◽  
Satyajit Sahoo

The present study was aimed to formulate, comparatively evaluate and optimize multiple lipid drug carriers of valsartan for oral controlled release to overcome the problems associated with the drug such as bioavailability, to reduce the dosage regimen, half life and to determine the appropriateness of niosomal formulation as a drug carrier. Ether injection method was chosen for the formulation of physically and chemically stable niosomes of valsartan. The formulation and process parameters were optimized by manufacturing placebo niosomes. Than drug loaded niosome was prepared by varying the concentration of span 60. The prepared nine formulations were evaluated for various parameters. Placebo niosomes were evaluated for appearance, odour, texture, creaming volume, pH and changes after 15 days. The medicated nine formulations were evaluated for organoleptic properties (appearance/color, odour), pH, total drug content, entrapment efficiency, mean particle size and polydispersibility index, zeta potential and In-vitro drug release. All formulations were off-white in color, odourless, and fluid in nature. It was stable and did not show sedimentation. The pH was found to be in the range of 4.6-5.4. Drug content was found in the range of 89.13 to 99.52. The Entrapment efficiency was found in range of 79.05 to 98.24. The mean vesicle size of drug loaded niosomes of the different batches ranged between 2.52-3.42μm. The polydispersvity index was in the range of 0.325 to 0.420 which indicates a narrow vesicle size distribution. The values of zeta potential were in the range of -20.29 mV to -30.55 mV which indicates that niosome had sufficient charge and mobility to inhibit aggregation of vesicles. All the nine formulations shows constant drug release in controlled manner up to 24 h. Formulation V7 was considered to be the best formulation as the % drug content (99.52 ± 0.97), % entrapment efficiency (98.24 ± 1.50) and % drug release at the end of 24th h (98.55) were high for V7. The optimized formulation V7 showed higher degree of correlation coefficient (r2) 0.9805 which indicates process of constant drug release from dosage form. The present study concludes that the prepared niosome is a convenient and efficiency carrier for the delivery of antihypertensive drug. Besides this, it provided controlled delivery of drug.


2020 ◽  
Vol 10 (6-s) ◽  
pp. 83-88
Author(s):  
Priyam Chaurasiya ◽  
Ritesh Agarwal ◽  
Kavita R. Loksh

Objective: The objective of present study is to develop and evaluate the elastic liposomes of metronidazole so as to provide the sustained release and improve its bioavailability. Methods: Elastic liposomes were prepared by rotary evaporation method using Span 80 and Span 60 as a surfactants. The prepared elastic liposomes were evaluated for entrapment efficiency, vesicle size, In vitro drug release. Results: The drug release profiles from different elastic liposomes-in-vehicle formulations were in agreement with the physicochemical properties of the formulations. The formulation prepared showed an average vesicle size 185.4nm. The amount of drug entrapped into the elastic liposomes formulations was determined. The entrapment efficiency was found to be 73.45±0.78 %. A good amount of drug was entrapped in the liposome formulations prepared. Based on different parameters formulations of batch TG2 was found to be the best formulations. Stability study was performed on the selected formulation TG2. When the regression coefficient values of were compared, it was observed that ‘r’ values of first order was maximum i.e. 0.993 hence indicating drug release from formulations was found to follow Korsmeyer Peppas model release kinetics Conclusion: These results indicate that elastic liposome can function as probable drug delivery systems to enhance transdermal permeation of metronidazole for treating the topical infections. Keywords: Metronidazole, Elastic liposomes, Topical administration, Skin infection


Sign in / Sign up

Export Citation Format

Share Document