scholarly journals Gastroretentive Pulsatile Release Tablets of Lercanidipine HCl: Development, Statistical Optimization, andIn VitroandIn VivoEvaluation

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Gagganapalli Santhoshi Reddy ◽  
Usha Yogendra Nayak ◽  
Praful Balavant Deshpande ◽  
Srinivas Mutalik

The present study was aimed at the development of gastroretentive floating pulsatile release tablets (FPRTs) of lercanidipine HCl to enhance the bioavailability and treat early morning surge in blood pressure. Immediate release core tablets containing lercanidipine HCl were prepared and optimized core tablets were compression-coated using buoyant layer containing polyethylene oxide (PEO) WSR coagulant, sodium bicarbonate, and directly compressible lactose. FPRTs were evaluated for variousin vitrophysicochemical parameters, drug-excipient compatibility, buoyancy, swelling, and release studies. The optimized FPRTs were testedin vivoin New Zealand white rabbits for buoyancy and pharmacokinetics. DoE optimization of data revealed FPRTs containing PEO (20% w/w) with coat weight 480 mg were promising systems exhibiting good floating behavior and lag time in drug release. Abdominal X-ray imaging of rabbits after oral administration of the tablets, confirmed the floating behavior and lag time. A quadratic model was suggested for release at 7th and 12th h and a linear model was suggested for release lag time. The FPRT formulation improved pharmacokinetic parameters compared to immediate release tablet formulation in terms of extent of absorption in rabbits. As the formulation showed delay in drug release bothin vitroandin vivo, nighttime administration could be beneficial to reduce the cardiovascular complications due to early morning surge in blood pressure.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 260 ◽  
Author(s):  
Dongwei Wan ◽  
Min Zhao ◽  
Jingjing Zhang ◽  
Libiao Luan

This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.


2009 ◽  
Vol 59 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Pramod Kumar ◽  
Sanjay Singh ◽  
Brahmeshwar Mishra

Development and biopharmaceutical evaluation of extended release formulation of tramadol hydrochloride based on osmotic technologyExtended release formulation of tramadol hydrochloride (TRH) based on osmotic technology was developed and evaluated. Target release profile was selected and different variables were optimized to achieve it. Formulation variables such as the level of swellable polymer, plasticizer and the coat thickness of semipermeable membrane (SPM) were found to markedly affect drug release. TRH release was directly proportional to the levels of plasticizer but inversely proportional to the levels of swellable polymer and coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensity but dependent on osmotic pressure of the release media.In vivostudy was also performed on six healthy human volunteers and various pharmacokinetic parameters (cmax,tmax,AUC0-24,MRT) and relative bioavailability were calculated. Thein vitroandin vivoresults were compared with the performance of two commercial TRH tablets. The developed formulation provided more prolonged and controlled TRH release compared to the marketed formulation.In vitro-in vivocorrelation (IVIVC) was analyzed according to the Wagner-Nelson method. The optimized formulation (batch IVB) exhibited good IVIV correlation (R= 0.9750). The manufacturing procedure was found to be reproducible and formulations were stable over 6 months of accelerated stability testing.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hardik Rana ◽  
Rushikesh Chaudhari ◽  
Vaishali Thakkar ◽  
Tejal Gandhi

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form. Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective. Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets was formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner – Nelson approach. Results: Drug – Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP yield less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots were revealed the significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h. Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose had a significant effect on drug release in sustained-release minitablet. The approach can be useful in the industry.


2014 ◽  
Vol 17 (2) ◽  
pp. 207 ◽  
Author(s):  
Yady Juliana Manrique-Torres ◽  
Danielle J Lee ◽  
Faiza Islam ◽  
Lisa M Nissen ◽  
Julie A.Y. Cichero ◽  
...  

Purpose. To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Methods. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Results. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Conclusions. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Vol 26 (44) ◽  
pp. 5755-5763
Author(s):  
Kaleem Ullah ◽  
Shujaat Ali Khan ◽  
Muhammad Sohail ◽  
Abdul Mannan ◽  
Ghulam Murtaza

Background: Oxaliplatin (OXP), a 3rd generation platinum compound, which causes severe side effects due to; impulse high concentration in the bloodstream thereby exposing healthy cells at a high ratio, nonspecific delivery at the target site and non-compliance is administered intravenously. Objective: The project was aimed at the development, characterization, and in-vitro and in-vivo evaluation of pHresponsive hydrogels for oral administration of OXP. Methods: Hydrogel formulations were synthesized through a free radical polymerization technique followed by brief characterization using various techniques. The hydrogels were investigated for various in-vitro studies such as sol-gel, drug loading, swelling, drug release, and MTT-assay. While in-vivo studies such as oral tolerability, histopathology, and hematology studies were performed on rabbits. A simple and sensitive HPLC-UV method was optimized and the comparative pharmacokinetic study was performed in rabbits using OXP-oral solution and OXP-loaded hydrogels. Results: In-vitro characterization confirmed that the reactant was successfully crosslinked to form thermally stable hydrogels with decreased crystallinity and rough surface. Swelling and drug release showed that hydrogels were more responsive to basic pH (6.8 and 7.4) in comparison with pH 1.2. The blank hydrogels were cytocompatible as more than 95% of the cells were viable while free OXP and OXP-loaded hydrogels displayed dosedependent cytotoxic effect. In-vivo studies confirmed that chitosan and gelatin hydrogel suspension was well tolerable up to 3800 mg/kg and 4000 mg/kg of body weight, respectively. Hematology and serum chemistry reports were well within the range suggesting normal liver and kidney functions. Similarly, histopathology slides of rabbit vital organs were also found normal without causing any histopathological change. Conclusion: HPLC-UV method was successfully optimized for OXP detection in oral solution and hydrogels administered to rabbits. A significant difference was found among various pharmacokinetic parameters by comparing the two groups including half-life (t1/2), tmax, Cmax, AUCtot MRT, Vz, and Lz.


Author(s):  
Sushma Appala ◽  
Ramesh Bomma ◽  
Kishan Veerabrahma

Objective of the investigation was to develop gastro retentive dosage form of gemifloxacin mesylate for local action in the stomach as it has antibacterial activity against Helicobacter pylori. Gemifloxacin mesylate is a synthetic broad-spectrum antibacterial agent for oral administration, having 7 hrs half-life and 71% oral bioavailability. In present study, gemifloxacin mesylate floating matrix tablets were prepared by direct compression method using polymers (HPMC K4M, HPMC K15M and polyox WSR 1105) and evaluated for various parameters like drug content, floating behavior (floating lag time and total floating time), in vitro drug release, swelling index, weight variation, friability, hardness and thickness. Sodium bicarbonate was incorporated as gas generating agent in all formulations. Drug-excipients compatibility was studied by Differential Scanning Calorimetry. Results have shown that the amount of polymer in the formulation affected the drug release. Optimized formulation (F8 containing polyox WSR1105 as release retarding agent) was selected based on in vitro drug release, floating lag time, floating time and other parameters. This formulation followed zero order kinetics and non-Fickian mechanism of drug release. In vivo radiographic study was conducted in healthy human volunteers using tablets containing BaSO4 as radio opaque agent. The average residence time was found to be 4.5± 0.86 h (n=3). This design of gastro retentive drug delivery system helps in increasing the local delivery of drug in patients with Helicobacter pylori infection


Author(s):  
Sindhoor S M ◽  
Sneh Priya ◽  
Amala Maxwell

Objective: The aim of the present study was to formulate and evaluate the novel in situ gel of lafutidine for gastroretentive drug deliveryMethods: A gastroretentive in situ gel of lafutidine was formulated by pH-triggered ionic gelation method using different concentrations of gelling polymer such as sodium alginate, gellan gum, and xanthum gum. Prepared formulations were evaluated for viscosity, density, buoyancy lag time and buoyancy duration, and drug content. In vitro drug release studies of all formulations were also performed. In vivo fluorescence imaging study was conducted for optimized formulation and compared with control.Results: The concentration of gelling agents and release retardant polymers significantly affected viscosity, floating behavior, and in vitro drug release of the formulations. The pH and drug content were found in the range of 6.72–7.20 and 88.74–95.33%, respectively. Floating lag time was <2 min; duration of floating was more than 12 h. Minimum and maximum in vitro drug release were found to be for formulation F9 (51.74%) and F1 (82.76%), respectively, at the end of 12 h. The drug was released from the all the formulations in a sustained manner. In vivo studies confirmed the gastroretention of the formulation in mice stomach for 8 h. Stability studies indicated that the there was no significant change in the visual appearance, floating behavior, and drug content.Conclusion: The gastroretentive in situ gel system, prolonged the gastric residence time, thereby targeting site-specific drug release in the upper gastrointestinal tract.


Author(s):  
J. Shakila

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 82-93
Author(s):  
Selvi Arunkumar ◽  
L. Srinivas ◽  
D. Satyavati ◽  
C. Emmanuel

The present study is an attempt to develop bilayer matrix tablets of Nebivolol Hydrochloride and Valsartan with immediate release for Nebivolol Hydrochloride and sustained release for Valsartan. Superdisintegrants such as sodium starch glycolate and Crosscarmellose sodium were evaluated for immediate release of Nebivolol Hydrochloride and polymers HPMC K100M and K4M for sustained release of Valsartan. Preformulation studies were performed prior to compression. The compressed bilayer tablets were evaluated for weight variation, thickness, hardness, friability, drug content and in vitro drug release using USP dissolution apparatus type 2 in 0.01N HCl and phosphate buffer pH 6.8. All the pre and post compression parameters were found to be within the acceptable limits. The results of dissolution show that the formulations B3 was the best of all immediate and sustained release layer batches. The release kinetics of Valsartan was subject to curve fitting analysis in order to identify the best fit kinetic model. The regression analysis proves that the best formulations follow zero order release and drug release by diffusion process based on Fick’s law of diffusion. The data for stability studies infer no considerable change in drug content and dissolution rates as per ICH guidelines. The best formulation B3 was subjected to in vivo pharmacokinetic studies in rabbit model. In vitro, In vivo correlation (IVIVC) showed considerable linearity. Hence a novel bilayer tablet formulation of Nebivolol Hydrochloride and Valsartan was successfully developed by combining both immediate (IR) and sustained (SR) release layers. Keywords: Bilayer tablets, fixed unit dosage form, Nebivolol hydrochloride, Valsartan, LC-MS analysis.


Sign in / Sign up

Export Citation Format

Share Document