Research on fog Resource Scheduling based on Cloud-fog Collaboration Technology in the Electric Internet of Things

Author(s):  
Youchan Zhu ◽  
Yingzi Wang ◽  
Weixuan Liang

Background: With the further development of electric Internet of things (eIoT), IoT devices in the distributed network generate data with different frequencies and types. Objective: Fog platform is located between the smart collected terminal and cloud platform, and the resources of fog computing are limited, which affects the delay of service processing time and response time. Methods: In this paper, an algorithm of fog resource scheduling and load balancing is proposed. First, the fog devices divide the tasks into high or low priority. Then, the fog management nodes cluster the fog nodes through K-mean+ algorithm and implement the earliest deadline first dynamic (EDFD) task scheduling algorithm and De-REF neural network load balancing algorithm. Results: We use tools to simulate the environment, and the results show that this method has strong advantages in -30% response time, -50% scheduling time, delay, -50% load balancing rate and energy consumption, which provides a better guarantee for eIoT. Conclusion: Resource scheduling is important factor affecting system performance. This article mainly addresses the needs of eIoT in terminal network communication delay, connection failure, and resource shortage. And the new method of resource scheduling and load balancing is proposed, The evaluation was performed and proved that our proposed algorithm has better performance than the previous method, which brings new opportunities for the realization of eIoT.

Fog computing is one of the enabling computing technology which primarily aims to fulfill the requirements of the Internet of Things (IoT). IoT is fast-growing networking and computing sector. The scalability of users, devices, and application is crucial for the success of IoT systems. The load balancing is an approach to distribute the load among computing nodes so that the computing nodes are not overloaded. In this paper, we propose the priority-based request servicing at fog computing centers. We particularly address the situation when the fog node in fog computing center (FCC) receives more workload than their capacity to handle it. The increased workload is shifted to nearby fog nodes rather than to the remote cloud. The proposed approach is able to minimize the offloading the high priority request to other nodes by 11% which proves the novelty of our proposed.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2479 ◽  
Author(s):  
Hongyu Xiao ◽  
Zhenjiang Zhang ◽  
Zhangbing Zhou

This paper firstly replaces the first-come-first-service (FCFS) mechanism with the time-sharing (TS) mechanism in fog computing nodes (FCNs). Then a collaborative load-balancing algorithm for the TS mechanism is proposed for FCNs. The algorithm is a variant of a work-stealing scheduling algorithm, and is based on the Nash bargaining solution (NBS) for a cooperative game between FCNs. Pareto optimality is achieved through the collaborative working of FCNs to improve the performance of every FCN. Lastly the simulation results demonstrate that the game-theory based work-stealing algorithm (GWS) outperforms the classical work-stealing algorithm (CWS).


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2021 ◽  
Vol 11 (3) ◽  
pp. 34-48
Author(s):  
J. K. Jeevitha ◽  
Athisha G.

To scale back the energy consumption, this paper proposed three algorithms: The first one is identifying the load balancing factors and redistribute the load. The second one is finding out the most suitable server to assigning the task to the server, achieved by most efficient first fit algorithm (MEFFA), and the third algorithm is processing the task in the server in an efficient way by energy efficient virtual round robin (EEVRR) scheduling algorithm with FAT tree topology architecture. This EEVRR algorithm improves the quality of service via sending the task scheduling performance and cutting the delay in cloud data centers. It increases the energy efficiency by achieving the quality of service (QOS).


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


Sign in / Sign up

Export Citation Format

Share Document