computing centers
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Zhongyi Zhang ◽  
Weihua Zhao ◽  
Ouhan Huang ◽  
Gangyong Jia ◽  
Youhuizi Li ◽  
...  

AbstractEdge computing perfectly integrates cloud computing centers and edge-end devices together, but there are not many related researches on how the edge-end node devices work to form an edge network and what the protocols used to implement the communication among nodes in the edge network. Aiming at the problem of coordinated communication among edge nodes in the current edge computing network architecture, this paper proposes an edge network routing and forwarding protocol based on target tracking scenarios. This protocol can meet the dynamic changes of node locations, and the elastic expansion of node scale. Individual node failures will not affect the overall network, and the network ensures efficient real-time with less communication overhead. The experimental results display that the protocol can effectively reduce the communications volume of the edge network, improve the overall efficiency of the network, and set the optimal sampling period, so as to ensure that the network delay is minimized.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hualei Ju ◽  
Lihua Liu

Edge computing is an important foundation for building 5G networks, but in my country, there are few applications or inventions based on edge computing. In order to improve the application of edge computing, this article innovatively designs a human behavior recognition system based on a patent perspective, which provides a reference for other researchers. This paper discusses and designs the software and hardware schemes and related communication methods of a new edge computing framework that combines edge devices and cloud computing centers. After processing the collected human behavior data, the behaviors of the corresponding monitoring objects are classified and modeled, and then the distributed computing of edge devices is used to modify these models. These systems are characterized by low energy consumption and fast response. The experimental results prove. The recognition efficiency of edge computing technology from the patent perspective has been greatly improved. Its recognition speed is more than 30% faster than other algorithm calculations, and the accuracy of recognition reaches 0.852, which is about 20% higher than traditional recognition. The authors show that edge computing technology based on a patent perspective can play an important role in our lives.


2021 ◽  
Vol 36 (10) ◽  
pp. 2150070
Author(s):  
Maria Grigorieva ◽  
Dmitry Grin

Large-scale distributed computing infrastructures ensure the operation and maintenance of scientific experiments at the LHC: more than 160 computing centers all over the world execute tens of millions of computing jobs per day. ATLAS — the largest experiment at the LHC — creates an enormous flow of data which has to be recorded and analyzed by a complex heterogeneous and distributed computing environment. Statistically, about 10–12% of computing jobs end with a failure: network faults, service failures, authorization failures, and other error conditions trigger error messages which provide detailed information about the issue, which can be used for diagnosis and proactive fault handling. However, this analysis is complicated by the sheer scale of textual log data, and often exacerbated by the lack of a well-defined structure: human experts have to interpret the detected messages and create parsing rules manually, which is time-consuming and does not allow identifying previously unknown error conditions without further human intervention. This paper is dedicated to the description of a pipeline of methods for the unsupervised clustering of multi-source error messages. The pipeline is data-driven, based on machine learning algorithms, and executed fully automatically, allowing categorizing error messages according to textual patterns and meaning.


Author(s):  
Wael S. Afifi ◽  
Ali A. El-Moursy ◽  
Mohamed Saad ◽  
Salwa M. Nassar ◽  
Hadia M. El-Hennawy

The fifth generation of wireless networks (5G) will kick off with evolved mobile broadband services as promised by several mobile-related associations, researchers, and operators. Compared to 4G, 5G aims to provide greater data rates with lower latency and higher coverage to numerous users who stream ubiquitous multimedia services. 5G benefits the innovation of internet of things (IoT) as well. To this end, several modifications in the network architecture are required. This chapter is discussing the role of cloud computing centers in 5G networks, and how such integration could be implemented as found in the literature. The benefits of cloud/5G integration will be explained as well. In addition, some challenges related to the integration will be demonstrated.


2021 ◽  
Vol 251 ◽  
pp. 02032
Author(s):  
Benjamin Tovar ◽  
Brian Bockelman ◽  
Michael Hildreth ◽  
Kevin Lannon ◽  
Douglas Thain

The processing needs for the High Luminosity (HL) upgrade for the LHC require the CMS collaboration to harness the computational power available on non-CMS resources, such as High-Performance Computing centers (HPCs). These sites often limit the external network connectivity of their computational nodes. In this paper we describe a strategy in which all network connections of CMS jobs inside a facility are routed to a single point of external network connectivity using a Virtual Private Network (VPN) server by creating virtual network interfaces in the computational nodes. We show that when the computational nodes and the host running the VPN server have the namespaces capability enabled, the setup can run entirely on user space with no other root permissions required. The VPN server host may be a privileged node inside the facility configured for outside network access, or an external service that the nodes are allowed to contact. When namespaces are not enabled at the client side, then the setup falls back to using a SOCKS server instead of virtual network interfaces. We demonstrate the strategy by executing CMS Monte Carlo production requests on opportunistic non-CMS resources at the University of Notre Dame. For these jobs, cvmfs support is tested via fusermount (cvmfsexec), and the native fuse module.


2020 ◽  
Author(s):  
Robert B. Haehnel ◽  
Andrew M. Wissink ◽  
Glover George ◽  
Deanna Hardin ◽  
John Fegyveresi

Sign in / Sign up

Export Citation Format

Share Document