A Many-Objective Evolutionary Algorithm Based on Two-Phase Selection

Author(s):  
Erchao Li ◽  
Li-sen Wei

Aims: The main purpose of this paper is to achieve good convergence and distribution in different Pareto fronts. Background: Research in recent decades has appeared that evolutionary multi-objective optimization can effectively solve multi-objective optimization problems with no more than 3 targets. However, when solving MaOPs, the traditional evolutionary multi-objective optimization algorithm is difficult to balance convergence and diversity effectively. In order to solve these problems, many algorithms have emerged, which can be roughly divided into three types: decomposition-based, index-based, and dominance relationship-based. In addition, many algorithms introduce the idea of clustering into the environment. However, there are some disadvantages to solving different types of MaOPs. In order to take advantage of the above algorithms, this paper proposes a many-objective optimization algorithm based on two-phase evolutionary selection. Objective: To verify the comprehensive performance of the algorithm on the testing problem of different Pareto front, 18 examples of regular PF problems and irregular PF problems are used to test the performance of the algorithm proposed in this paper. Method: This paper proposes a two-phase evolutionary selection strategy. The evolution process is divided into two phases to select individuals with good quality. In the first phase, the convergence area is constructed by indicators to accelerate the convergence of the algorithm. In the second phase, the parallel distance is used to map the individuals to the hyperplane, and the individuals are clustered according to the distance on the hyperplane, and then the smallest fitness in each category is selected. Result: For regular Pareto front testing problems, MaOEA/TPS performed better than RVEA 、PREA 、CAMOEA and One by one EA in 19,21,30,26 cases, respectively, while it was only outperformed by RVEA 、PREA 、CAMOEA and One by one EA in 8,5,1,6 cases. For irregular front testing problem, MaOEA/TPS performed better than RVEA 、PREA 、CAMOEA and One by one EA in 20,17,25,21 cases, respectively, while it was only outperformed by RVEA 、PREA 、CAMOEA and One by one EA in 6,8,1,6 cases. Conclusion: The paper proposes a many-objective evolutionary algorithm based two phase selection, termed MaOEA/TPS, for solving MaOPs with different shapes of Pareto fronts. The results show that MaOEA/TPS has quite a competitive performance compared with the several algorithms on most test problems. Other: Although the algorithm in this paper has achieved good results, the optimization problem in the real environment is more difficult, so applying the algorithm proposed in this paper to real problems will be the next research direction.

Author(s):  
Zhenkun Wang ◽  
Qingyan Li ◽  
Qite Yang ◽  
Hisao Ishibuchi

AbstractIt has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the $$\epsilon $$ ϵ -dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF.


2012 ◽  
Vol 220-223 ◽  
pp. 2814-2817
Author(s):  
Li Gao ◽  
Dan Kong

It is very difficult to find out the best solution for some complicated system problems frequently appear. These problems are mostly of multi-objective. The present solution, however, is short of communication. Based on CO, one of MDO method, this paper gives a new simple kind of multi-objective framework, which will be suitable to multi-subject problems. It can not only organize each disciplinary effectively, but gives the inter-influence between disciplinaries by fitness function as well. Meanwhile, the perfect NSGAⅡ is used as be the basic algorithm, prematurity can be avoided and Pareto front with good distribution is obtained. Micro machined accelerometer example validates the correctness of the framework.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3065 ◽  
Author(s):  
Ying Liu ◽  
Qingsha S. Cheng ◽  
Slawomir Koziel

In this article, a generalized sequential domain patching (GSDP) method for efficient multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems in the DTLZ series, and the results show the GSDP method saved computational cost by more than 85% compared to NSGA-II method. A diversity comparison indicator (DCI) is used to evaluate approximate Pareto fronts. The comparison results show the diversity performance of GSDP is better than that of NSGA-II in most cases. We demonstrate the proposed GSDP method using a practical multi-objective design example of EM-based UWB antenna for IoT applications.


2010 ◽  
Vol 13 (4) ◽  
pp. 794-811 ◽  
Author(s):  
E. Fallah-Mehdipour ◽  
O. Bozorg Haddad ◽  
M. A. Mariño

The main reason for applying evolutionary algorithms in multi-objective optimization problems is to obtain near-optimal nondominated solutions/Pareto fronts, from which decision-makers can choose a suitable solution. The efficiency of multi-objective optimization algorithms depends on the quality and quantity of Pareto fronts produced by them. To compare different Pareto fronts resulting from different algorithms, criteria are considered and applied in multi-objective problems. Each criterion denotes a characteristic of the Pareto front. Thus, ranking approaches are commonly used to evaluate different algorithms based on different criteria. This paper presents three multi-objective optimization methods based on the multi-objective particle swarm optimization (MOPSO) algorithm. To evaluate these methods, bi-objective mathematical benchmark problems are considered. Results show that all proposed methods are successful in finding near-optimal Pareto fronts. A ranking method is used to compare the capability of the proposed methods and the best method for further study is suggested. Moreover, the nominated method is applied as an optimization tool in real multi-objective optimization problems in multireservoir system operations. A new technique in multi-objective optimization, called warm-up, based on the PSO algorithm is then applied to improve the quality of the Pareto front by single-objective search. Results show that the proposed technique is successful in finding an optimal Pareto front.


2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


Sign in / Sign up

Export Citation Format

Share Document