Analysis of the inherent characteristics of rotor-diaphragm coupling – flexible support system

Author(s):  
Yu Guangbin ◽  
◽  
Duan Yuanwang ◽  
Zhao Xinhui ◽  
Tian Ren ◽  
...  
2021 ◽  
Vol 11 (17) ◽  
pp. 8071
Author(s):  
Zujin Jin ◽  
Gang Cheng ◽  
Yusong Pang ◽  
Shichang Xu ◽  
Dunpeng Yuan

During the processing of an optical mirror, the performance parameters of the bottom support system would affect the surface forming accuracy of the mirror. The traditional bottom support system has a large unadjustable support stiffness, which increases the difficulty of unloading the impact force generated by the grinding disc. In response to this scenario, a flexible support system (FSS) consisting of 36 support cylinders with beryllium bronze reeds (BBRs) and rolling diaphragms (RDs) as key components is designed. It is necessary to analyze the key components of the support cylinder to reduce its axial movement resistance, ensure a consistent force output of each support point. First, the internal resistance model of a flexible support cylinder is established, and the main factors of internal resistance are then analyzed. Thereafter, the multi-objective structural parameters of the BBR and RD are simulated in ANSYS using the control variable method. The optimal structural parameters of BBR and RD are determined by simulation. Finally, experiments are performed on the RD ultimate pressure, internal resistance of the support cylinder, and consistency of the force output of the FSS. The experimental results show that the support cylinder with the optimized design has good force output consistency, which provides a theoretical basis for the application of FSS in optical mirror processing.


Author(s):  
Chao Xu ◽  
Pingfa Feng ◽  
Dingwen Yu ◽  
Zhijun Wu ◽  
Jianfu Zhang

Despite recent advances and improvements in modeling and prediction of the dynamics of the machining process, an efficient machining process is limited due to chatter and instability of machining system. In fact, the machining system contains various kinds of joints, which cause difficulties in dynamics modeling, simulation and prediction. Moreover, the flexible support system results in large deformation and violent vibration of the workpiece when machining, and the thin-walled workpiece easily gives rise to the chatter of the machining system. Therefore, the dynamics of the flexible support system was considered to calculate stability lobe diagram in the modeling of milling process. The whole machining system was regarded as a closed loop composed by the machine tool structures, support, workpiece and machining process. In this paper, the receptance coupling (RC) method was introduced to predict the dynamics of the closed machining system. A milling process was taken for example to predict the chatter limitations using the dynamics of closed model. The mathematical model of the machining system (machine tool structures, spindle, holder and tool), together with the details of joint contacts, was given based on the RC method. The RC model was used to obtain the dynamics of the system, while receptance of the tool point was coupled. Based on the coupling model of the machining system, the depth limitations under different speeds were estimated for the technology parameter optimization in milling process. The response was considered to be the sum of the cutting point and the support system. The flexibility of the support system was considered to be the feedback of the cutting stiffness. By this means, the traditional model was modified to calculate the stability lobe diagram based on the dynamics of the spindle and support system. Furthermore, the milling experiment was carried out to verify the prediction results, and the dominant natural frequencies of receptance at tool point were obtained by modal testing to define the stability lobe diagram. It was found that the chatter results matched well with the stability lobes. It was concluded that the support system with poor stiffness might cause violent chatter especially when the workpiece was thin-walled. The cutting depth limitations of the flexible support system were lower than that of the rigid one. Moreover, this closed model of the machining system is appropriate for the chatter prediction of the flexible support system or thin-walled workpiece, so it is helpful for a better parameter optimization.


1981 ◽  
Vol 103 (3) ◽  
pp. 361-370 ◽  
Author(s):  
L. Licht ◽  
W. J. Anderson ◽  
S. W. Doroff

An asymmetric rotor (19N; 4.3 lb), supported radially and axially by compliant bearings (foil bearings), is subjected to severe excitation by rotating unbalance (43 μm.N; 6100 μin.oz) in the “pitching” mode, at speeds to 50,000 rpm. The resilient, air-lubricated bearings provide very effective damping, so that regions of resonance and instability can be traversed with impunity, with amplitudes and limit-trajectories remaining within acceptable bounds. A novel journal bearing is introduced, in which a resilient support is furnished by the outer turn of the coiled foil-element, initially bent to form an open polygon. The experimental apparatus and procedure are described, and the response of the rotor and flexible support system are copiously documented by oscilloscope records of motion.


2021 ◽  
Vol 11 (6) ◽  
pp. 2715
Author(s):  
Zujin Jin ◽  
Gang Cheng ◽  
Shichang Xu ◽  
Wei Gu

To improve the accuracy of a flexible support system (FSS) used for optical mirror processing, the influence of air content in the working medium and ambient temperature change on the FSS is analyzed and studied. First, the disturbance model of the FSS and single support cylinder affected by different air contents in the working medium and ambient temperature is established, and the mapping relationship between the influencing factors and the affected factors is analyzed. Then, the effects of ambient temperature change on volume, support height, and support pressure for different air contents are simulated and analyzed separately. The results of the simulation obtained show that when the working medium is mixed with different volume fractions of air and the ambient temperature changes, upper and lower chamber volumes, support rigidity, and support height of the support cylinder are also changed. Finally, an experimental study of pressure changes in the upper and lower chambers, support height, and support rigidity changes at different ambient temperatures and air contents are carried out. By measuring the support height, support pressure, and support rigidity error, the effectiveness of the established mathematical disturbance model of FSS is further verified. It not only provides a theoretical basis for improving the support accuracy of the FSS but also provides a foundation for the application of the FSS in the processing stage of large optical mirrors.


Sign in / Sign up

Export Citation Format

Share Document