Shortcut Biological Nitrogen Removal from Coal Gasification Wastewater in Three-Stage MBBRs

2018 ◽  
Vol 90 (11) ◽  
pp. 1977-1984
Author(s):  
Ling Wang ◽  
Hui-qiang Li ◽  
Hong-jun Han
1998 ◽  
Vol 38 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Junxin Liu ◽  
Weiguang Li ◽  
Xiuheng Wang ◽  
Hongyuan Liu ◽  
Baozhen Wang

In this paper, a study of a new process with nitrosofication and denitrosofication for nitrogen removal from coal gasification wastewater is reported. In the process, fibrous carriers were packed in an anoxic tank and an aerobic tank for the attached growth of the denitrifying bacteria and Nitrobacter respectively, and the suspended growth activated sludge was used in an aerobic tank for the growth of Nitrosomonas. A bench scale test has been carried out on the process, and the test results showed that using the process, 25% of the oxygen demand and 40% of the carbon source demand can be saved, and the efficiency of total nitrogen removal can increase over 10% as compared with a traditional process for biological nitrogen removal.


2015 ◽  
Vol 5 (4) ◽  
pp. 569-578 ◽  
Author(s):  
Qian Zhao ◽  
Hongjun Han ◽  
Fang Fang ◽  
Haifeng Zhuang ◽  
Dexin Wang ◽  
...  

Different strategies, including extension of hydraulic retention time (HRT), dilution, and addition of powdered activated carbon (PAC) and super-powdered activated carbon (S-PAC), were investigated for the quick recovery of nitrifying bacteria activity from the inhibition of coal gasification wastewater (CGW). A laboratory-scale short-cut biological nitrogen removal (SBNR) reactor treating CGW, achieving high levels (90%) of nitrogen removal, was used. After a shock of phenolic compounds (around 250 mg/L) and a failed performance, the results of the batch recovery tests indicated that the PAC and S-PAC addition were the best recovery strategies. In the SBNR reactor, the addition of 1 g/L PAC and S-PAC shortened the recovery time from the natural recovery of 32 days to 13 days and 10 days, respectively. Fluorescence in situ hybridization (FISH) assay and the adsorption isotherms revealed that activated carbons absorbed phenolic compounds, reducing the toxicity and allowing for the quick recovery of SBNRs treating CGW. S-PAC showed greater adsorption capacity for phenol than PAC.


Author(s):  
Gabriela Bonassa ◽  
Alice Chiapetti Bolsan ◽  
Camila Ester Hollas ◽  
Bruno Venturin ◽  
Daniela Candido ◽  
...  

2011 ◽  
pp. 285-296
Author(s):  
M. Ruscalleda Beylier ◽  
M.D. Balaguer ◽  
J. Colprim ◽  
C. Pellicer-Nàcher ◽  
B.-J. Ni ◽  
...  

2016 ◽  
Vol 3 (4) ◽  
pp. 175-179 ◽  
Author(s):  
Nathan D. Manser ◽  
Meng Wang ◽  
Sarina J. Ergas ◽  
James R. Mihelcic ◽  
Arnold Mulder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document