scholarly journals DISEÑO Y EVALUACIÓN EXPERIMENTAL DE UN NUEVO DISPOSITIVO MECANICO PARA EL CONTROL DE POTENCIA DE PEQUEÑOS AEROGENERADORES EN REGIMEN DE SOBREVELOCIDAD DEL VIENTO

2017 ◽  
Vol 22 (2) ◽  
pp. 77
Author(s):  
Salome Gonzáles Chávez ◽  
William Urcuhuaranga Jesús

En este trabajo se realiza el diseño y pruebas de un nuevo dispositivo mecánico acoplado a la Cola-Veleta de un pequeño aerogenerador, tal que autorregula y controla la potencia instantánea de generación durante las sobrevelocidades de viento. La faja costera rural y zonas altoandinas del Perú, poseen gran potencial eólico, pero contrariamente se tienen nulos servicios eléctricos. En este escenario, la dotación de electricidad mediante microaerogeneradores constituye una alternativa estratégica. Una desventaja de los vientos característicos de las zonas de influencia es su alta variación de velocidades, cuyo efecto adverso en el aerogenerador es la destrucción prematura del bobinado del generador de imanes permanentes y rotura de palas. Las pruebas de regulación y control de potencia de aerogeneración se realizaron en el Túnel de Viento del Laboratorio de Energía de la Facultad de Ingeniería Mecánica de la UNI. Los resultados se dan en las curvas de potencia del conjunto aerogenerador de ensayo, donde se demuestra el control del crecimiento de la potencia generada, en el rango de velocidades de viento superiores a la condición nominal de diseño del aerogenerador. También se demuestra la confiabilidad del mecanismo cuando se somete a velocidades extremas de viento hasta alcanzar el bloqueo del aerogenerador, así como la inmediata recuperación continua de operación a medida que la velocidad de viento disminuye hacia condiciones nominales de trabajo. Palabras clave.- Control de potencia, Pequeño aerogenerador, Sobrevelocidad de viento, Dispositivo pivote de cola, Confiabilidad. ABSTRACTIn this work we make the design and testing of a new mechanical element coupled to the vane of a small wind turbine, such that self-regulates and controls the instantaneous power generating wind during overspeed. The rural coast an andean highlands of Peru have high wind potential and on the contrary zero electrical services, in this scenario the provision of electricity by small wind turbines is a strategy solution. One disadvantage of the winds from these areas is its high speed variation, whose adverse effect on the turbine generator is the premature destruction magnet generator winding and turbine blades breakage. Tests were performed on the Wind Tunnel Energy Laboratory- Mechanical Engineering Faculty, Universidad Nacional de Ingeniería-Perú. The results are given in the power curves of the wind turbine prototype. We also demonstrated the reliability of the mechanism when submitting to extreme wind speeds up to the blocking of the turbine generator, as well as the immediate recovery operation when the wind speed returns to nominal turbine generator working conditions. Keywords.- Power control, Small wind turbine, Wind overspeed, Tail pivot mechanism, Reliability.

2019 ◽  
Vol 9 (21) ◽  
pp. 4632 ◽  
Author(s):  
Brian Loza ◽  
Josué Pacheco-Chérrez ◽  
Diego Cárdenas ◽  
Luis I. Minchala ◽  
Oliver Probst

A comparative evaluation of the fatigue damage occurring in the blades of small wind turbines, with different power regulation schemes, has been conducted for the first time. Three representative test cases were built, one based on stall regulation and two using pitch regulation. The power curves were tuned to be identical in all cases, in order to allow for a direct comparison of fatigue damage. A methodology combining a dynamic simulation of a wind turbine forced by stochastic wind speed time series, with the application of the IEC 61400-2 standard, was designed and applied for two levels of turbulence intensity. The effect of the wind regime was studied by considering Weibull-distributed wind speeds with a variety of parameter sets. Not unexpectedly, in typical wind regimes, stall regulation led to a generally higher fatigue damage than pitch regulation, for similar structural blade design, but the practical implications were smaller than thought previously. Given the need for cost-effective designs for small wind turbines, stall regulation may be a viable alternative for off-grid applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ranjeet Agarwala ◽  
Paul I. Ro

This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT) control strategy for large megawatt (MW) wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30) are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


2021 ◽  
Vol 25 (1) ◽  
pp. 41-48
Author(s):  
Stanisław Chudzik

The article presents the results of research into the operation of a model of a wind micropower plant with a variable blade angle. The research was carried out on a miniature model of a measuring stand built for the purpose of carrying out work on pre-developed projects of wind micro power plants. The stand allows to carry out measurements related to the selection of the optimal propeller geometry, as well as the development and testing of algorithms for optimal control of the micropower plant. The physical basics of wind turbine operation and the methods of its optimal control are presented. The results of the performed measurements for the selected propeller blade geometry with the possibility of changing its setting angle are presented. A DC generator with a load with a non-linear characteristic in the form of a Li-Po battery cell was used. The results of operation of a simple MPPT control algorithm are presented. The lack of optimal control systems for the operation of micropower plants is dictated by the general belief that the costs of its production are high in relation to the possible improvement of the efficiency of micropower plants. Moreover, the practical methods of controlling larger wind turbines are not optimal for small and very small turbines. The conducted research focused on determining the possibility of using turbines with variable blade angles depending on its rotational speed. In larger wind farms, changing the blade angle is mainly used to limit the power of the turbine at high wind speeds. In micro wind power plants such solutions are not used for economic reasons. However, the use of a simple mechanism for changing the angle of the blades depending on the rotational speed of the propeller can increase the efficiency of the turbine in a wider range of wind speeds. The small dimensions of the research model allow for quick and cheap development of preliminary prototypes of turbine blades thanks to the possibility of using 3D printing technology.


2017 ◽  
Vol 28 (3) ◽  
pp. 79 ◽  
Author(s):  
Gareth Erfort ◽  
Theodor Willem Von Backström ◽  
Gerhard Venter

Wind conditions in South Africa are suitable for small-scale wind turbines, with wind speeds below 7 m.s−1. This investigation is about a methodology to optimise a full wind turbine using a surrogate model. A previously optimised turbine was further optimised over a range of wind speeds in terms of a new parameterisation methodology for the aerodynamic profile of the turbine blades, using non-uniform rational B-splines to encompass a wide range of possible shapes. The optimisation process used a genetic algorithm to evaluate an input vector of 61 variables, which fully described the geometry, wind conditions and rotational speed of the turbine. The optimal performance was assessed according to a weighted coefficient of power, which rated the turbine blade’s ability to extract power from the available wind stream. This methodology was validated using XFOIL to assess the final solution. The results showed that the surrogate model was successful in providing an optimised solution and, with further refinement, could increase the coefficient of power obtained.


2013 ◽  
Vol 17 (6) ◽  
pp. 671-676 ◽  
Author(s):  
C. Astle ◽  
I. Burge ◽  
M. Chen ◽  
T. Herrler ◽  
L. Kwan ◽  
...  

2018 ◽  
Vol 165 ◽  
pp. 07005
Author(s):  
Wei Sai ◽  
Gin Boay Chai

A methodology to study the fatigue of a wind turbine blade in a 10KW small wind turbine is proposed in this paper. Two working conditions (namely normal fatigue operation condition and extreme wind condition) are considered based on IEC61400-2. The maximum load calculated from both cases were used as a reference to perform material sample fatigue study. Fiber-metal laminate – GLARE 3/2 with a centre 1mm notch on the external aluminium layers was modelled based on fracture mechanics approach to calculate the stress intensity factor and fatigue crack growth rate at maximum applied stress of 240Mpa. GLARE panel fabrication and tensile tests were included. The fatigue tests were performed on unnotched samples with stress range from 80Mpa to 300Mpa and plotted into S-N curve.


Sign in / Sign up

Export Citation Format

Share Document