scholarly journals Separated Pitch Control at Tip: Innovative Blade Design Explorations for Large MW Wind Turbine Blades

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ranjeet Agarwala ◽  
Paul I. Ro

This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT) control strategy for large megawatt (MW) wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30) are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.

Author(s):  
Yang Huang ◽  
Decheng Wan

Abstract With wind turbine blades becoming longer and slender, the influence of structural deformation on the aerodynamic performance of wind turbine cannot be ignored. In the present work, the actuator line technique that simplifies the wind turbine blades into virtual actual lines is utilized to simulate the aerodynamic responses of wind turbine and capture downstream wake characteristics. Moreover, the structural model based on a two-node, four degree-of-freedom (DOF) beam element is adopted for the deformation calculation of the wind turbine blades. By combing the actuator line technique and linear finite element theory, the aeroelastic simulations for the wind turbine blades can be achieved. The aeroelastic responses of NREL-5MW wind turbine under uniform wind inflow condition with different wind speeds are investigated. The aerodynamic loads, turbine wake field, blade tip deformations and blade root bending moments are analyzed to explore the influence of blade structural responses on the performance of the wind turbine. It is found that the power output of the wind turbine decreases when the blade deformation is taken into account. Significant asymmetrical phenomenon of the wake velocity is captured due to the deformation of the wind turbine blades.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing wind turbine blades is to improve the power capture ability. Since rotor control technology is currently limited to controlling rotational speed and blade pitch, an increasing concern has been given to morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twist distribution along the span and a shape that can be controlled by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade and has a fixed pitch. The optimization problems associated with the control of the morphing blade and a blade with pitch control are formulated. The optimal results show that the morphing blade gives better results than the blade with pitch control in terms of produced power. Under the assumption that at a given site, the annual average wind speed is known and the wind speed follows a Rayleigh distribution, the annual energy production of wind turbines was evaluated for three types of blade, namely, morphing blade, blade with pitch control and fixed pitch blade. For an annual average wind speed varying between 5 m/s and 15 m/s, it turns out that the annual energy production of the wind turbine containing morphing blades is 24.5% to 69.7% higher than the annual energy production of the wind turbine containing pitch fixed blades. Likewise, the annual energy production of the wind turbine containing blades with pitch control is 22.7% to 66.9% higher than the annual energy production of the wind turbine containing pitch fixed blades.


Author(s):  
Ohad Gur ◽  
Aviv Rosen

The optimal aerodynamic design of Horizontal Axis Wind Turbine (HAWT) is investigated. The Blade-element/Momentum model is used for the aerodynamic analysis. In the first part of the paper a simple design method is derived, where the turbine blade is optimized for operation at a specific wind speed. Results of this simple optimization are presented and discussed. Besides being optimized for operation at a specific wind speed, without considering operation at other wind speeds, the simple model is also limited in the choice of design goals (cost functions), design variables and constraints. In the second part of the paper a comprehensive design method that is based on a mixed numerical optimization strategy, is presented. This method can handle almost any combination of: design goal, design variables, and constraints. Results of this method are presented, compared with the results of the simple optimization, and discussed.


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing the wind turbine blades is to improve the power capture ability. Since the rotor control technology is currently limited to controlling the rotor rotational speed and the pitch of the blades, an increasing concern has been given to the morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twisted distribution along the span and its shape can be controlled by adjusting the root twisted angle and the tip twisted angle of the blade. Moreover, to evaluate the performances of the wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade, and the optimization problems associated with the morphing blade and pitch control blade are both formulated. The optimal results show that the morphing blade gives better results than the pitch control blade in terms of produced power. Under the assumption that in a given site, the annual average wind speed is known and the wind speed follows the Rayleigh distribution, we can evaluate the annual energy produced by these three blade types. While the annual average wind speed varies from 5 m/s to 15 m/s, the results show that the optimal morphing blade can increase 23.9 percent to 71.4 percent in annual energy production while the optimal pitch control blade can increase 22.5 percent to 67.4 percent in annual energy production, over the existing twisted pitch fixed blade.


2020 ◽  
Vol 21 (7) ◽  
pp. 1621-1637
Author(s):  
Anna-Maria Tilg ◽  
Flemming Vejen ◽  
Charlotte Bay Hasager ◽  
Morten Nielsen

AbstractRainfall kinetic energy is an important parameter to estimate erosion potential in connection to soil erosion or in the recent years to the erosion of the leading edges of wind turbine blades. Little is known about the seasonal drop size distribution and fall velocity dependence of rainfall kinetic energy as well as its relationship with wind speed. Therefore, 6 years of Thies Laser Precipitation Monitor disdrometer and wind measurements from Voulund, a field site in western Denmark, were analyzed. It was found that the rainfall kinetic energy was highest in summer due to higher drop concentrations and in autumn due to more time with rain. The rainfall kinetic energy peaked for drop diameters between 0.875 and 2.25 mm independent of the season. Rainfall kinetic energy decreased significantly with increasing wind speed, if considering the vertical fall speed of the drops for the calculation of the rainfall kinetic energy. However, it should be noted that the measurement uncertainty increases with increasing wind speed. As disdrometer observations are rarer than rain rate observations, the performance of empirical equations describing the relationship between rainfall kinetic energy rate and rain rate was investigated. It was found that an equation trained with an alternative method fulfilled the statistical requirements for linear regression and had a similar error compared to equations in the literature. Based on the analyses, it can be concluded that the erosion potential due to rainfall kinetic energy is highest between June and November at low wind speeds and high rain rates.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Xiaocheng Zhu ◽  
Jinge Chen ◽  
Xin Shen ◽  
Zhaohui Du

Along with the upscaling tendency, lighter and so more flexible wind turbine blades are introduced for reducing material and manufacturing costs. The flexible blade deforms under aerodynamic loads and in turn affects the flow field, arising the aeroelastic problems. In this paper, the impacts of blade flexibility on the wind turbine loads, power production, and pitch actions are discussed. An advanced aeroelastic model is developed for the study. A free wake vortex lattice model instead of the traditionally used blade element momentum (BEM) method is used to calculate the aerodynamic loads, and a geometrically exact beam theory is adopted to compute the blade structural dynamics. The flap, lead-lag bending, and torsion degrees-of-freedom (DOFs) are all included and nonlinear effects due to large deflections are considered. The National Renewable Energy Laboratory (NREL) 5 MW reference wind turbine is analyzed. It is found that the blade torsion deformations are significantly affected by both the aerodynamic torsion moment and the sectional aerodynamic center offset with respect to the blade elastic axis. Simulation results further show that the largest bending deflection of the blade occurs at the rated wind speed, while the torsion deformation in toward-feather direction continuously increases along with the above-rated wind speed. A significant reduction of the rotor power is observed especially at large wind speed when considering the blade flexibility, which is proved mainly due to the blade torsion deformations instead of the pure-bending deflections. Lower pitch angle settings are found required to maintain the constant rotor power at above-rated wind speeds.


2019 ◽  
Vol 6 (1) ◽  
pp. 64
Author(s):  
Jamal Jamal

Savonius wind turbines are wind turbines that canoperate at low wind speeds, this type of turbine is very suitable tobe used in several places in Indonesia. The research aims toimprove the performance of the Savonius wind turbine withvariations in the number of turbine blades as well as variations inthe velocity of wind speed. The research method wasexperimental where wind turbine testing was carried out withvariations in the number of turbine blades with number of 2, 3and 4 blades, other variations carried out were wind speed at 3.5;4,5; 5.5 and 6.5 m/s. The study results show that the 2-bladeturbine produces greater rotation, but the torque moment islower than the 3 and 4 blade turbines, this can be seen in the lowefficiency of the 2 blade turbine at low wind speeds with highloading. At 3.5 m / s wind turbines 2 blade turbines haveefficiency that tends to be the same as 3 and 4 blade turbines upto 0.5 N but at loads of 0.6 - 1.2 N 2 blade turbines have lowerefficiency, while at wind speeds of 4.5 - 6.5 m / s 2 blade turbineshave greater efficiency than turbines 3 and 4 blades up to a loadof 1.2 N but if the load is added then the efficiency of 2-bladeturbines can be smaller than efficiency 3 and 4-blade.


Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


Sign in / Sign up

Export Citation Format

Share Document