Curcumin down regulates steroidogenesis in Leydig cells via restriction of protein kinase A activity

Author(s):  
Chih Hsien Chiu ◽  
Yi Chun Lina ◽  
Jyun Yuan Wanga
2003 ◽  
Vol 17 (11) ◽  
pp. 2189-2200 ◽  
Author(s):  
Takashi Hirakawa ◽  
Mario Ascoli

Abstract The pathways involved in activation of the ERK1/2 cascade in Leydig cells were examined in MA-10 cells expressing the recombinant human LH receptor (hLHR) and in primary cultures of rat Leydig cell precursors. In MA-10 cells expressing the recombinant hLHR, human choriogonadotropin-induced activation of ERK1/2 is effectively inhibited by overexpression of a cAMP phosphodiesterase (a manipulation that blunts the human choriogonadotropin-induced cAMP response), by addition of H89 (a selective inhibitor of protein kinase A), or by overexpression of the heat-stable protein kinase A inhibitor, but not by overexpression of an inactive mutant of this inhibitor. Stimulation of hLHR did not activate Rap1, but activated Ras in an H89-sensitive fashion. Addition of H89 to MA-10 cells that had been cotransfected with a guanosine triphosphatase-deficient mutant of Ras almost completely inhibited the hLHR-mediated activation of ERK1/2. We also show that 8-bromo-cAMP activates Ras and ERK1/2 in MA-10 cells and in primary cultures of rat Leydig cells precursors in an H89-sensitive fashion, whereas a cAMP analog 8-(4-chloro-phenylthio)-2′-O-methyl-cAMP (8CPT-2Me-cAMP) that is selective for cAMP-dependent guanine nucleotide exchange factor has no effect. Collectively, our results show that the hLHR-induced phosphorylation of ERK1/2 in Leydig cells is mediated by a protein kinase A-dependent activation of Ras.


Endocrinology ◽  
2007 ◽  
Vol 149 (2) ◽  
pp. 851-857 ◽  
Author(s):  
XingJia Wang ◽  
Xiangling Yin ◽  
Randolph B. Schiffer ◽  
Steven R. King ◽  
Douglas M. Stocco ◽  
...  

The cyclooxygenase-2 (COX2)-dependent inhibition of Leydig cell steroidogenesis has been demonstrated. To understand the mechanism for this effect of COX2, the present study examined the role of an enzyme downstream of COX2, namely thromboxane A synthase (TBXAS), in steroidogenesis. Inhibition of TBXAS activity with the inhibitor furegrelate induced a concentration-dependent increase in cAMP-induced steroidogenic acute regulatory (StAR) protein in MA-10 mouse Leydig cells. The increase in StAR protein occurred concomitantly with a significant increase in steroid hormone production. Similar results were obtained in StAR promoter activity assays and RT-PCR analyses of StAR mRNA levels, suggesting that inhibition of TBXAS activity enhanced StAR gene transcription. These observations were corroborated when TBXAS expression was specifically inhibited by RNA interference. Although the RNA interference reduced mRNA levels of TBXAS, it increased StAR mRNA levels, StAR protein, and steroidogenesis. Additional studies indicated that inhibition of TBXAS activity reduced DAX-1 protein, a repressor in StAR gene transcription. In the absence of cAMP, inhibition of TBXAS activity did not induce a significant increase in steroid hormone and StAR protein. However, addition of a low level of cAMP analogs dramatically increased steroidogenesis. Lastly, inhibition of protein kinase A activity essentially abolished the steroidogenic effect of the TBXAS inhibitor. Thus, the results from the present study suggest that a minimal level of protein kinase A activity is required for the steroidogenic effect of the TBXAS inhibitor and that inhibition of TBXAS activity or its expression increase the steroidogenic sensitivity of MA-10 mouse Leydig cells to cAMP stimulation.


Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1488-1500 ◽  
Author(s):  
Natalia V. Gómez ◽  
Alejandra B. Gorostizaga ◽  
María M. Mori Sequeiros García ◽  
Laura Brion ◽  
Andrea Acquier ◽  
...  

Abstract MAPKs such as ERK1/2 are dephosphorylated, and consequently inactivated, by dual specificity phosphatases (MKPs). In Leydig cells, LH triggers ERK1/2 phosphorylation through the action of protein kinase A. We demonstrate that, in MA-10 Leydig cells, LH receptor activation by human chorionic gonadotropin (hCG) up-regulates MKP-2, a phosphatase that dephosphorylates ERK1/2, among other MAPKs. After 2 hours, hCG and 8-bromo-cAMP (8Br-cAMP) significantly increased MKP-2 mRNA levels (3-fold), which declined to basal levels after 6 hours. MKP-2 protein accumulation exhibited a similar kinetic profile. In cells transiently expressing flag-MKP-2 protein, hCG/8Br-cAMP stimulation promoted the accumulation of the chimera (2.5-fold after 3 h of stimulation). Pharmacologic and biochemical approaches showed that the accumulation of flag-MKP-2 involves a posttranslational modification that increases MKP-2 half-life. MKP-2 down-regulation by a short hairpin RNA (MKP-2 shRNA) raised the levels of phosphorylated ERK1/2 reached by 8Br-cAMP stimulation. This effect was evident after 180 min of stimulation, which suggests that MKP-2 down-regulates the late phase of cAMP-induced ERK1/2 activity. Also, MKP-2 down-regulation by MKP-2 shRNA increased the stimulatory effect of 8Br-cAMP on both promoter activity and messenger levels of CYP11A1, which encodes for the steroidogenic enzyme P450scc and is induced by LH/hCG through protein kinase A and ERK1/2 activities. Our findings demonstrate, for the first time, that LH/hCG tightly regulates MKP-2 expression, which modulates the induction of CYP11A1 by 8Br-cAMP. MKP-2 up-regulation might control ERK1/2 activity in a specific temporal frame to modulate the expression of a finite repertory of ERK-dependent genes.


Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 357-365 ◽  
Author(s):  
Ángel García-López ◽  
Jan Bogerd ◽  
Joke C. M. Granneman ◽  
Wytske van Dijk ◽  
John M. Trant ◽  
...  

This report aimed to establish, using African catfish, Clarias gariepinus, as model species, a basis for understanding a well-known, although not yet clarified, feature of male fish reproductive physiology: the strong steroidogenic activity of FSHs. Assays with gonadotropin receptor-expressing cell lines showed that FSH activated its cognate receptor (FSHR) with an at least 1000-fold lower EC50 than when challenging the LH receptor (LHR), whereas LH stimulated both receptors with similar EC50s. In androgen release bioassays, FSH elicited a significant response at lower concentrations than those required to cross-activate of the LHR, indicating that FSH stimulated steroid release via FSHR-dependent mechanisms. LHR/FSHR-mediated stimulation of androgen release was completely abolished by H-89, a specific protein kinase A inhibitor, pointing to the cAMP/protein kinase A pathway as the main route for both LH- and FSH-stimulated steroid release. Localization studies showed that intratubular Sertoli cells express FSHR mRNA, whereas, as reported for the first time in a vertebrate, catfish Leydig cells express both LHR and FSHR mRNA. Testicular FSHR and LHR mRNA expression increased gradually during pubertal development. FSHR, but not LHR, transcript levels continued to rise between completion of the first wave of spermatogenesis at about 7 months and full maturity at about 12 months of age, which was associated with a previously recorded approximately 3-fold increase in the steroid production capacity per unit testis weight. Taken together, our data strongly suggest that the steroidogenic potency of FSH can be explained by its direct trophic action on FSHR-expressing Leydig cells. In search of a mechanistic basis for the strong steroidogenic activity of fish FSH, we demonstrate FSH receptor expression by Leydig cells in catfish.


1986 ◽  
Vol 108 (3) ◽  
pp. 431-440 ◽  
Author(s):  
A. P. N. Themmen ◽  
J. W. Hoogerbrugge ◽  
F. F. G. Rommerts ◽  
H. J. van der Molen

ABSTRACT The stimulation of steroid production in Leydig cells by LH is accompanied by increased cyclic AMP levels, activation of protein kinase A, increased phosphorylation of at least six phosphoproteins and requires protein synthesis. However, an LH-releasing hormone agonist (LHRH-A) can stimulate steroid production without stimulation of cyclic AMP levels. In the present study we have shown that LH action involves calcium fluxes through the plasma membrane, in addition to activation of protein kinase A. The action of LHRH-A, in contrast, does not require calcium fluxes and is not potentiated by 1-methyl-3-isobutylxanthine, indicating that cyclic AMP is not involved. Extracellular calcium is required for the action of both LH and LHRH-A. An increase in intracellular calcium concentration due to the effect of ionophore A23187 did not stimulate steroidogenesis and had deleterious effects on intracellular adenosinetriphosphate levels. LH and 4β-phorbol-12-myristate-13-acetate (PMA), an activator of protein kinase C, both stimulated phosphorylation of proteins of 17 000 and 33 000 mol. wt, whereas LHRH-A had no effect. However, compared with the effect of LH, PMA had a much smaller effect on steroid production, indicating that even if protein kinase C may be activated by LH its role in the regulation of steroid production may be less important than the role of protein kinase A. Action of LHRH-A does not appear to be mediated by calcium fluxes, protein kinase C activation or active protein phosphorylation. J. Endocr. (1986) 108, 431–440


2011 ◽  
Vol 358 (1-2) ◽  
pp. 387-395 ◽  
Author(s):  
Subrata Deb ◽  
Jenny K. Tai ◽  
Grace S. Leung ◽  
Thomas K. H. Chang ◽  
Stelvio M. Bandiera

Sign in / Sign up

Export Citation Format

Share Document