scholarly journals Single-molecule Analysis of DNA Replication Dynamics in Budding Yeast and Human Cells by DNA Combing

BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (11) ◽  
Author(s):  
Hélène Tourrière ◽  
Julie Saksouk ◽  
Armelle Lengronne ◽  
Philippe Pasero
2017 ◽  
Author(s):  
Divya Ramalingam Iyer ◽  
Nicholas Rhind

AbstractIn response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents—MMS, 4NQO and bleomycin—that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.Author SummaryFaithful duplication of the genome is essential for genetic stability of organisms and species. To ensure faithful duplication, cells must be able to replicate damaged DNA. To do so, they employ checkpoints that regulate replication in response to DNA damage. However, the mechanisms by which checkpoints regulate DNA replication forks, the macromolecular machines that contain the helicases and polymerases required to unwind and copy the parental DNA, is unknown. We have used DNA combing, a single-molecule technique that allows us to monitor the progression of individual replication forks, to characterize the response of fission yeast replication forks to DNA damage that blocks the replicative polymerases. We find that forks pass most lesions with only a brief pause and that this lesion bypass is checkpoint independent. However, at a low frequency, forks stall at lesions, and that the checkpoint is required to prevent these stalls from accumulating single-stranded DNA. Our results suggest that the major role of the checkpoint is not to regulate the interaction of replication forks with DNA damage, per se, but to mitigate the consequences of fork stalling when forks are unable to successfully navigate DNA damage on their own.


2015 ◽  
Vol 210 (2) ◽  
pp. 177-179 ◽  
Author(s):  
Susan A. Gerbi

Using single molecule analysis of replicated DNA (SMARD), Drosopoulos et al. (2015; J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410061) report that DNA replication initiates at measurable frequency within the telomere of mouse chromosome arm 14q. They demonstrate that resolution of G4 structures on the G-rich template strand of the telomere requires some overlapping functions of BLM and WRN helicase for leading strand synthesis.


Biochimie ◽  
1999 ◽  
Vol 81 (8-9) ◽  
pp. 859-871 ◽  
Author(s):  
John Herrick ◽  
Aaron Bensimon

Methods ◽  
2012 ◽  
Vol 57 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Hasan Yardimci ◽  
Anna B. Loveland ◽  
Antoine M. van Oijen ◽  
Johannes C. Walter

2015 ◽  
Vol 43 (5) ◽  
pp. 2655-2665 ◽  
Author(s):  
Simone Guedes Calderano ◽  
William C. Drosopoulos ◽  
Marina Mônaco Quaresma ◽  
Catarina A. Marques ◽  
Settapong Kosiyatrakul ◽  
...  

2013 ◽  
Vol 24 (5) ◽  
pp. 578-587 ◽  
Author(s):  
Hui Hua ◽  
Mandana Namdar ◽  
Olivier Ganier ◽  
Juraj Gregan ◽  
Marcel Méchali ◽  
...  

Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I–II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.


2018 ◽  
Author(s):  
Magali Hennion ◽  
Jean-Michel Arbona ◽  
Corinne Cruaud ◽  
Florence Proux ◽  
Benoît Le Tallec ◽  
...  

ABSTRACTWe have harnessed nanopore sequencing to study DNA replication genome-wide at the single-molecule level. Using in vitro prepared DNA substrates, we characterized the effect of bromodeoxyuridine (BrdU) substitution for thymidine on the MinION nanopore electrical signal. Using a neural-network basecaller trained on yeast DNA containing either BrdU or thymidine, we identified BrdU-labelled tracts in yeast cells synchronously entering S phase in the presence of hydroxyurea and BrdU. As expected, the BrdU-labelled tracts coincided with previously identified early-firing, but not late-firing, replication origins. These results open the way to high-throughput, high-resolution, single-molecule analysis of DNA replication in many experimental systems.


Sign in / Sign up

Export Citation Format

Share Document