scholarly journals Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis

2013 ◽  
Vol 24 (5) ◽  
pp. 578-587 ◽  
Author(s):  
Hui Hua ◽  
Mandana Namdar ◽  
Olivier Ganier ◽  
Juraj Gregan ◽  
Marcel Méchali ◽  
...  

Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I–II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.

Author(s):  
Tzu-Yu Lee ◽  
Yi-Ching Li ◽  
Min-Guan Lin ◽  
Chwan-Deng Hsiao ◽  
Hung-Wen Li

DNA damages lead to stalled or collapsed replication forks. Replication restart primosomes re-initiate DNA synthesis at these stalled or collapsed DNA replication forks, which is important for bacterial survival. Primosomal...


2006 ◽  
Vol 26 (3) ◽  
pp. 1098-1108 ◽  
Author(s):  
Masayoshi Iizuka ◽  
Tomoko Matsui ◽  
Haruhiko Takisawa ◽  
M. Mitchell Smith

ABSTRACT The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.


2020 ◽  
Vol 6 (38) ◽  
pp. eabc0330 ◽  
Author(s):  
D. T. Gruszka ◽  
S. Xie ◽  
H. Kimura ◽  
H. Yardimci

During replication, nucleosomes are disrupted ahead of the replication fork, followed by their reassembly on daughter strands from the pool of recycled parental and new histones. However, because no previous studies have managed to capture the moment that replication forks encounter nucleosomes, the mechanism of recycling has remained unclear. Here, through real-time single-molecule visualization of replication fork progression in Xenopus egg extracts, we determine explicitly the outcome of fork collisions with nucleosomes. Most of the parental histones are evicted from the DNA, with histone recycling, nucleosome sliding, and replication fork stalling also occurring but at lower frequencies. Critically, we find that local histone recycling becomes dominant upon depletion of endogenous histones from extracts, revealing that free histone concentration is a key modulator of parental histone dynamics at the replication fork. The mechanistic details revealed by these studies have major implications for our understanding of epigenetic inheritance.


2014 ◽  
Vol 204 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Maria M. Magiera ◽  
Elisabeth Gueydon ◽  
Etienne Schwob

Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin–Cdk1 complex.


2017 ◽  
Vol 2 ◽  
pp. 2 ◽  
Author(s):  
Colette Fox ◽  
Juan Zou ◽  
Juri Rappsilber ◽  
Adele L. Marston

Background Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, CDKs are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB) duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear. Methods Fluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14. Results We demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation. Conclusion Our findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of cyclical events at the meiosis I to meiosis I transition.


2022 ◽  
Author(s):  
Clemence Claussin ◽  
Jacob Vazquez ◽  
Iestyn Whitehouse

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription and whether the progression of sister replisomes is coordinated are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a new method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single molecule readout of long DNA molecules. Using Replicon-seq, we have investigated replisome movement along chromatin. We found that sister replisomes progress with remarkable consistency from the origin of replication but function autonomously. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and facilitating efficient termination. Replicon-seq provides an unprecedented means of defining replisome movement across the genome.


2017 ◽  
Author(s):  
Divya Ramalingam Iyer ◽  
Nicholas Rhind

AbstractIn response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents—MMS, 4NQO and bleomycin—that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.Author SummaryFaithful duplication of the genome is essential for genetic stability of organisms and species. To ensure faithful duplication, cells must be able to replicate damaged DNA. To do so, they employ checkpoints that regulate replication in response to DNA damage. However, the mechanisms by which checkpoints regulate DNA replication forks, the macromolecular machines that contain the helicases and polymerases required to unwind and copy the parental DNA, is unknown. We have used DNA combing, a single-molecule technique that allows us to monitor the progression of individual replication forks, to characterize the response of fission yeast replication forks to DNA damage that blocks the replicative polymerases. We find that forks pass most lesions with only a brief pause and that this lesion bypass is checkpoint independent. However, at a low frequency, forks stall at lesions, and that the checkpoint is required to prevent these stalls from accumulating single-stranded DNA. Our results suggest that the major role of the checkpoint is not to regulate the interaction of replication forks with DNA damage, per se, but to mitigate the consequences of fork stalling when forks are unable to successfully navigate DNA damage on their own.


2018 ◽  
Author(s):  
Kelsey Whinn ◽  
Gurleen Kaur ◽  
Jacob S. Lewis ◽  
Grant Schauer ◽  
Stefan Müller ◽  
...  

DNA replication occurs on chromosomal DNA while processes such as DNA repair, recombination and transcription continue. However, we have limited experimental tools to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct fused to the photo-stable dL5 protein fluoromodule as a novel, targetable protein-DNA roadblock for studying replication fork arrest at the single-molecule level in vitro as well as in vivo. We find that the specifically bound dCas9–guideRNA complex arrests viral, bacterial and eukaryotic replication forks in vitro.


Sign in / Sign up

Export Citation Format

Share Document