scholarly journals Mapping DNA replication with nanopore sequencing

2018 ◽  
Author(s):  
Magali Hennion ◽  
Jean-Michel Arbona ◽  
Corinne Cruaud ◽  
Florence Proux ◽  
Benoît Le Tallec ◽  
...  

ABSTRACTWe have harnessed nanopore sequencing to study DNA replication genome-wide at the single-molecule level. Using in vitro prepared DNA substrates, we characterized the effect of bromodeoxyuridine (BrdU) substitution for thymidine on the MinION nanopore electrical signal. Using a neural-network basecaller trained on yeast DNA containing either BrdU or thymidine, we identified BrdU-labelled tracts in yeast cells synchronously entering S phase in the presence of hydroxyurea and BrdU. As expected, the BrdU-labelled tracts coincided with previously identified early-firing, but not late-firing, replication origins. These results open the way to high-throughput, high-resolution, single-molecule analysis of DNA replication in many experimental systems.

2018 ◽  
Author(s):  
Kelsey Whinn ◽  
Gurleen Kaur ◽  
Jacob S. Lewis ◽  
Grant Schauer ◽  
Stefan Müller ◽  
...  

DNA replication occurs on chromosomal DNA while processes such as DNA repair, recombination and transcription continue. However, we have limited experimental tools to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct fused to the photo-stable dL5 protein fluoromodule as a novel, targetable protein-DNA roadblock for studying replication fork arrest at the single-molecule level in vitro as well as in vivo. We find that the specifically bound dCas9–guideRNA complex arrests viral, bacterial and eukaryotic replication forks in vitro.


2015 ◽  
Vol 210 (2) ◽  
pp. 191-208 ◽  
Author(s):  
William C. Drosopoulos ◽  
Settapong T. Kosiyatrakul ◽  
Carl L. Schildkraut

Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.


2017 ◽  
Author(s):  
Francesco De Carli ◽  
Nikita Menezes ◽  
Wahiba Berrabah ◽  
Valérie Barbe ◽  
Auguste Genovesio ◽  
...  

AbstractDNA replication is a crucial process for the universal ability of living organisms to reproduce. Existing methods to map replication genome-wide use large cell populations and therefore smooth out variability between chromosomal copies. Single-molecule methods may in principle reveal this variability. However, current methods remain refractory to automated molecule detection and measurements. Their low throughput has therefore precluded genome-wide analyses. Here, we have repurposed a commercial optical DNA mapping device, the Bionano Genomics Irys system, to map the replication signal of single DNA molecules onto genomic position at high throughput. Our methodology (HOMARD) combines fluorescent labelling of replication tracks and nicking endonuclease (NE) sites with DNA linearization in nanochannel arrays and dedicated image processing. We demonstrate the robustness of our approach by providing an ultra-high coverage (23,311 x) replication map of bacteriophage λ DNA in Xenopus egg extracts. HOMARD opens the way to genome-wide analysis of DNA replication at the single-molecule level.


2021 ◽  
Vol 19 ◽  
pp. 2057-2069
Author(s):  
Rebeca Bocanegra ◽  
G.A. Ismael Plaza ◽  
Carlos R. Pulido ◽  
Borja Ibarra

2013 ◽  
Vol 104 (2) ◽  
pp. 74a
Author(s):  
Hsin-Mei Cheng ◽  
Philip Gröger ◽  
Andreas Hartmann ◽  
Elena M. Seco ◽  
Silvia Ayora ◽  
...  

2018 ◽  
Vol 115 (33) ◽  
pp. 8346-8351 ◽  
Author(s):  
Xiang Li ◽  
Yu Jiang ◽  
Shaorong Chong ◽  
David R. Walt

In this paper, we report an example of the engineered expression of tetrameric β-galactosidase (β-gal) containing varying numbers of active monomers. Specifically, by combining wild-type and single-nucleotide polymorphism plasmids at varying ratios, tetrameric β-gal was expressed in vitro with one to four active monomers. The kinetics of individual enzyme molecules revealed four distinct populations, corresponding to the number of active monomers in the enzyme. Using single-molecule-level enzyme kinetics, we were able to measure an accurate in vitro mistranslation frequency (5.8 × 10−4 per base). In addition, we studied the kinetics of the mistranslated β-gal at the single-molecule level.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1993-2000 ◽  
Author(s):  
Chenshuo Ma ◽  
Chunyan Shan ◽  
Kevin Park ◽  
Aaron T. Mok ◽  
Paul J. Antonick ◽  
...  

AbstractUpconverting luminescent nanoparticles are photostable, nonblinking, and low chemically toxic fluorophores that are emerging as promising fluorescent probes at the single molecule level. High luminescence intensity upconversion nanoparticles (UCNPs) have previously been achieved by doping with high amounts of rare-earth ions using high excitation power (>2.5 MW/cm2). However, such particles are inadequate for in vitro live-cell imaging and single-particle tracking, as high excitation power can cause photodamage. Here, we compared UCNP luminescence intensities with different dopant concentrations and presented more efficient (about seven times) UCNPs at low excitation power by increasing the concentrations of Yb3+ and Tm3+ dopants (NaYF4: 60% Yb3+, 8% Tm3+) and adding a core-shell structure.


Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1758-1771 ◽  
Author(s):  
A. de Morgan ◽  
L. Brodsky ◽  
Y. Ronin ◽  
E. Nevo ◽  
A. Korol ◽  
...  

Exponential-phase yeast cells readily enter stationary phase when transferred to fresh, carbon-deficient medium, and can remain fully viable for up to several months. It is known that stationary-phase prokaryotic cells may still synthesize substantial amounts of DNA. Although the basis of this phenomenon remains unclear, this DNA synthesis may be the result of DNA maintenance and repair, recombination, and stress-induced transposition of mobile elements, which may occur in the absence of DNA replication. To the best of our knowledge, the existence of DNA turnover in stationary-phase unicellular eukaryotes remains largely unstudied. By performing cDNA-spotted (i.e. ORF) microarray analysis of stationary cultures of a haploid Saccharomyces cerevisiae strain, we demonstrated on a genomic scale the localization of a DNA-turnover marker [5-bromo-2′-deoxyuridine (BrdU); an analogue of thymidine], indicative of DNA synthesis in discrete, multiple sites across the genome. Exponential-phase cells on the other hand, exhibited a uniform, total genomic DNA synthesis pattern, possibly the result of DNA replication. Interestingly, BrdU-labelled sites exhibited a significant overlap with highly expressed features. We also found that the distribution among chromosomes of BrdU-labelled and expressed features deviates from random distribution; this was also observed for the overlapping set. Ty1 retrotransposon genes were also found to be labelled with BrdU, evidence for transposition during stationary phase; however, they were not significantly expressed. We discuss the relevance and possible connection of these results to DNA repair, mutation and related phenomena in higher eukaryotes.


2021 ◽  
Author(s):  
Iacopo Bicci ◽  
Claudia Calabrese ◽  
Zoe J. Golder ◽  
Aurora Gomez-Duran ◽  
Patrick F Chinnery

SummaryMethylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered major technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns with WGBS, and then develop and assess the accuracy of a protocol for variant-specific methylation identification using long-read Oxford Nanopore Sequencing. Our approach circumvents mtDNA-specific confounders, while enriching for native full-length molecules over nuclear DNA. Variant calling analysis against Illumina deep re-sequencing showed that all expected mtDNA variants can be reliably identified. Methylation calling revealed negligible mtDNA methylation levels in multiple human primary and cancer cell lines. In conclusion, our protocol enables the reliable analysis of epigenetic modifications of mtDNA at single-molecule level at single base resolution, with potential applications beyond methylation.MotivationAlthough whole genome bisulfite sequencing (WGBS) is the gold-standard approach to determine base-level CpG methylation in the nuclear genome, emerging technical issues raise questions about its reliability for evaluating mitochondrial DNA (mtDNA) methylation. Concerns include mtDNA strand asymmetry rendering the C-rich light strand disproportionately vulnerable the chemical modifications introduced with WGBS. Also, short-read sequencing can result in a co-amplification of nuclear sequences originating from ancestral mtDNA with a high nucleotide similarity. Lastly, calling mtDNA alleles with varying proportions (heteroplasmy) is complicated by the C-to-T conversion introduced by WGBS on unmethylated CpGs. Here, we propose an alternative protocol to quantify methyl-CpGs in mtDNA, at single-molecule level, using Oxford Nanopore Sequencing (ONS). By optimizing the standard ONS library preparation, we achieved selective enrichment of native mtDNA and accurate single nucleotide variant and CpG methylation calling, thus overcoming previous limitations.


Sign in / Sign up

Export Citation Format

Share Document