scholarly journals Gliotoxin, identified from a screen of fungal metabolites, disrupts 7SK snRNP, releases P-TEFb and reverses HIV-1 latency

2019 ◽  
Author(s):  
Mateusz Stoszko ◽  
Abdullah M.S. Al-Hatmi ◽  
Anton Skriba ◽  
Michael Roling ◽  
Enrico Ne ◽  
...  

AbstractA leading pharmacological strategy towards HIV cure requires “shock” or activation of HIV gene expression in latently infected cells with Latency Reversal Agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs we used fungal secondary metabolites (extrolites) as a source of bio-active molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the P-TEFb inhibitory 7SK snRNP complex to be significantly reduced upon GTX treatment of independent donor CD4+T cells. GTX disrupted 7SK snRNP, releasing active P-TEFb, which then phosphorylated RNA Pol II CTD, inducing HIV transcription. Our data highlight the power of combining a medium throughput bioassay, mycology and orthogonal mass spectrometry to identify novel potentially therapeutic compounds.

2019 ◽  
Author(s):  
Birgitta Lindqvist ◽  
Sara Svensson Akusjarvi ◽  
Anders Sonnerborg ◽  
Marios Dimitriou ◽  
J. Peter Svensson

Human immunodeficiency virus type 1 (HIV-1) infection is a chronic condition, where viral DNA integrates into the genome. Latently infected cells form a persistent, heterogeneous reservoir. The reservoir that reinstates an active replication comprises only cells with intact provirus that can be reactivated. We confirmed that latently infected cells from patients exhibited active transcription throughout the provirus. To find transcriptional determinants, we characterized the establishment and maintenance of viral latency during proviral chromatin maturation in cultures of primary CD4+ T-cells for four months after ex vivo HIV-1 infection. As heterochromatin (marked with H3K9me3 or H3K27me3) gradually stabilized, the provirus became less accessible with reduced activation potential. In a subset of infected cells, active marks (i.e., H3K27ac) remained detectable, even after prolonged proviral silencing. After T-cell activation, the proviral activation occurred uniquely in cells with H3K27ac-marked proviruses. Our observations suggested that, after transient proviral activation, cells were actively returned to latency.


2020 ◽  
Vol 6 (33) ◽  
pp. eaba6617
Author(s):  
Mateusz Stoszko ◽  
Abdullah M. S. Al-Hatmi ◽  
Anton Skriba ◽  
Michael Roling ◽  
Enrico Ne ◽  
...  

A leading pharmacological strategy toward HIV cure requires “shock” or activation of HIV gene expression in latently infected cells with latency reversal agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs, we used fungal secondary metabolites as a source of bioactive molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the positive transcription elongation factor b (P-TEFb) inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex, to be significantly reduced upon GTX treatment of CD4+ T cells. GTX directly disrupted 7SK snRNP by targeting La-related protein 7 (LARP7), releasing active P-TEFb, which phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD), inducing HIV transcription.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


Author(s):  
Alyssa R Martin ◽  
Alexandra M Bender ◽  
Jada Hackman ◽  
Kyungyoon J Kwon ◽  
Briana A Lynch ◽  
...  

Abstract Background The HIV-1 latent reservoir (LR) in resting CD4 + T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. Methods We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from ten HIV-1-infected patients on ART using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. Results The frequencies of CD4 + T cells with intact proviruses were not significantly different in PB vs LN (61vs104/10 6CD4 + cells), and were substantially lower than frequencies of CD4 + T cells with defective proviruses. The frequencies of CD4 + T cells induced to produce high levels of viral RNA were not significantly different in PB vs LN (4.3/10 6 vs 7.9/10 6), but were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. Conclusions These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs


2015 ◽  
Vol 89 (22) ◽  
pp. 11284-11293 ◽  
Author(s):  
Hong Sun ◽  
Dhohyung Kim ◽  
Xiaodong Li ◽  
Maja Kiselinova ◽  
Zhengyu Ouyang ◽  
...  

ABSTRACTThe ability to persist long term in latently infected CD4 T cells represents a characteristic feature of HIV-1 infection and the predominant barrier to efforts aiming at viral eradication and cure. Yet, increasing evidence suggests that only small subsets of CD4 T cells with specific developmental and maturational profiles are able to effectively support HIV-1 long-term persistence. Here, we analyzed how the functional polarization of CD4 T cells shapes and structures the reservoirs of HIV-1-infected cells. We found that CD4 T cells enriched for a Th1/17 polarization had elevated susceptibilities to HIV-1 infection inex vivoassays, harbored high levels of HIV-1 DNA in persons treated with antiretroviral therapy, and made a disproportionately increased contribution to the viral reservoir relative to their contribution to the CD4 T memory cell pool. Moreover, HIV-1 DNA levels in Th1/17 cells remained stable over many years of antiretroviral therapy, resulting in a progressively increasing contribution of these cells to the viral reservoir, and phylogenetic studies suggested preferential long-term persistence of identical viral sequences during prolonged antiretroviral treatment in this cell compartment. Together, these data suggest that Th1/17 CD4 T cells represent a preferred site for HIV-1 DNA long-term persistence in patients receiving antiretroviral therapy.IMPORTANCECurrent antiretroviral therapy is very effective in suppressing active HIV-1 replication but does not fully eliminate virally infected cells. The ability of HIV-1 to persist long term despite suppressive antiretroviral combination therapy represents a perplexing aspect of HIV-1 disease pathogenesis, since most HIV-1 target cells are activated, short-lived CD4 T cells. This study suggests that CD4 T helper cells with Th1/17 polarization have a preferential role as a long-term reservoir for HIV-1 infection during antiretroviral therapy, possibly because these cells may imitate some of the functional properties traditionally attributed to stem cells, such as the ability to persist for extremely long periods of time and to repopulate their own pool size through homeostatic self-renewal. These observations support the hypothesis that HIV-1 persistence is driven by small subsets of long-lasting stem cell-like CD4 T cells that may represent particularly promising targets for clinical strategies aiming at HIV-1 eradication and cure.


2019 ◽  
Vol 116 (6) ◽  
pp. 2282-2289 ◽  
Author(s):  
Manabu Taura ◽  
Eric Song ◽  
Ya-Chi Ho ◽  
Akiko Iwasaki

HIV-1 integrates into the genome of target cells and establishes latency indefinitely. Understanding the molecular mechanism of HIV-1 latency maintenance is needed for therapeutic strategies to combat existing infection. In this study, we found an unexpected role for Apobec3A (apolipoprotein B MRNA editing enzyme catalytic subunit 3A, abbreviated “A3A”) in maintaining the latency state within HIV-1–infected cells. Overexpression of A3A in latently infected cell lines led to lower reactivation, while knockdown or knockout of A3A led to increased spontaneous and inducible HIV-1 reactivation. A3A maintains HIV-1 latency by associating with proviral DNA at the 5′ long terminal repeat region, recruiting KAP1 and HP1, and imposing repressive histone marks. We show that knockdown of A3A in latently infected human primary CD4 T cells enhanced HIV-1 reactivation. Collectively, we provide evidence and a mechanism by which A3A reinforces HIV-1 latency in infected CD4 T cells.


2017 ◽  
Vol 13 (2) ◽  
pp. e1006230 ◽  
Author(s):  
John K. Bui ◽  
Elias K. Halvas ◽  
Elizabeth Fyne ◽  
Michele D. Sobolewski ◽  
Dianna Koontz ◽  
...  
Keyword(s):  
T Cells ◽  
Ex Vivo ◽  

2019 ◽  
Vol 93 (10) ◽  
Author(s):  
George N. Llewellyn ◽  
Eduardo Seclén ◽  
Stephen Wietgrefe ◽  
Siyu Liu ◽  
Morgan Chateau ◽  
...  

ABSTRACTCombination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used anex vivolatency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use theex vivolatency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishesin vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCEHIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body’s immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009346
Author(s):  
Stuart R. Jefferys ◽  
Samuel D. Burgos ◽  
Jackson J. Peterson ◽  
Sara R. Selitsky ◽  
Anne-Marie W. Turner ◽  
...  

Transcriptional silencing of HIV in CD4 T cells generates a reservoir of latently infected cells that can reseed infection after interruption of therapy. As such, these cells represent the principal barrier to curing HIV infection, but little is known about their characteristics. To further our understanding of the molecular mechanisms of latency, we characterized a primary cell model of HIV latency in which infected cells adopt heterogeneous transcriptional fates. In this model, we observed that latency is a stable, heritable state that is transmitted through cell division. Using Assay of Transposon-Accessible Chromatin sequencing (ATACseq) we found that latently infected cells exhibit greatly reduced proviral accessibility, indicating the presence of chromatin-based structural barriers to viral gene expression. By quantifying the activity of host cell transcription factors, we observe elevated activity of Forkhead and Kruppel-like factor transcription factors (TFs), and reduced activity of AP-1, RUNX and GATA TFs in latently infected cells. Interestingly, latency reversing agents with different mechanisms of action caused distinct patterns of chromatin reopening across the provirus. We observe that binding sites for the chromatin insulator CTCF are highly enriched in the differentially open chromatin of infected CD4 T cells. Furthermore, depletion of CTCF inhibited HIV latency, identifying this factor as playing a key role in the initiation or enforcement of latency. These data indicate that HIV latency develops preferentially in cells with a distinct pattern of TF activity that promotes a closed proviral structure and inhibits viral gene expression. Furthermore, these findings identify CTCF as a novel regulator of HIV latency.


2021 ◽  
Author(s):  
Jeffrey Kuniholm ◽  
Elise Armstrong ◽  
Brandy Bernabe ◽  
Carolyn Coote ◽  
Anna Berenson ◽  
...  

ABSTRACTHIV-establishes a persistent proviral reservoir by integrating into the genome of infected host cells. Current antiretroviral treatments do not target this persistent population of proviruses which include latently infected cells that upon treatment interruption can be reactivated to contribute to HIV-1 rebound. Deep sequencing of persistent HIV proviruses has revealed that greater than 90% of integrated HIV genomes are defective and unable to produce infectious virions. We hypothesized that intragenic elements in the HIV genome support transcription of aberrant HIV-1 RNAs from defective proviruses that lack long terminal repeats (LTRs). Using an intact provirus detection assay, we observed that resting CD4+ T cells and monocyte-derived macrophages (MDMs) are biased towards generating defective HIV-1 proviruses. Multiplex reverse transcription digital drop PCR identified Env and Nef transcripts which lacked 5’ untranslated regions (UTR) in acutely infected CD4+ T cells and MDMs indicating transcripts are generated that do not utilize the promoter within the LTR. 5’UTR-deficient Env transcripts were also identified in a cohort of people living with HIV (PLWH) on ART, suggesting that these aberrant RNAs are produced in vivo. Using 5’ rapid amplification of cDNA ends (RACE), we mapped the start site of these transcripts within the Env gene. This region bound several cellular transcription factors and functioned as a transcriptional regulatory element that could support transcription and translation of downstream HIV-1 RNAs. These studies provide mechanistic insights into how defective HIV-1 proviruses are persistently expressed to potentially drive inflammation in PLWH.Author SummaryPeople living with HIV establish a persistent reservoir which includes latently infected cells that fuel viral rebound upon treatment interruption. However, the majority of HIV-1 genomes in these persistently infected cells are defective. Whether these defective HIV genomes are expressed and whether they contribute to HIV associated diseases including accelerated aging, neurodegenerative symptoms, and cardiovascular diseases are still outstanding questions. In this paper, we demonstrate that acute infection of macrophages and resting T cells is biased towards generating defective viruses which are expressed by DNA regulatory elements in the HIV genome. These studies describe an alternative mechanism for chronic expression of HIV genomes.


Sign in / Sign up

Export Citation Format

Share Document