scholarly journals Online Monitoring of Effluent Quality for Assessing the Effect of Wastewater Treatment Plant to Discharge into the Receiving Water: a review

Author(s):  
Andri Taufick Rizaluddin ◽  
Henggar Hardiani

In general, industries that use water in their production process will produce wastewater which usually contains a lot of polluting contaminants. It will affects the surrounding environment by contaminating the water bodies, which will adversely affect the health life of all living beings. Pollution that occurs in the some rivers in Indonesia has begun to raise concern for Indonesian Goverment. Some of the river locations already have heavy poluted status. The pollution is mostly caused by industrial waste and domestic waste along the river. Treatment plants for wastewater effluents are mandatory for any industry which discharges their wastewater effluents into the environment. Information on monitoring the quality of industrial wastewater is very important to be perceived by examining changes in water quality condition that are getting better or worse. It is necessary to develop a system that monitors the condition of industrial wastewater. Industrial wastewater monitoring is a device system that collects real time data. Online monitoring technology is one part that plays an important role in supporting activities to control marine environmental pollution. Real‐time monitoring of wastewater quality remains an unresolved problem to the wastewater treatment industry. One of the problem in most industries in Indonesia is that the operational and performance of wastewater treatment plants (WWTP) are still not optimal, and need to be improved. The application of industrial technology concept 4.0 and automation systems in the industry is expected to improve the WWTP supervision process which has advantages such as reducing down time, reducing consumption of raw materials, reducing the energy used, increasing productivity, improving product quality and making efficient use of resources and processes, so as to reduce industrial operating costs.

2019 ◽  
Vol 80 (8) ◽  
pp. 1421-1429 ◽  
Author(s):  
Maria Rosa di Cicco ◽  
Antonio Spagnuolo ◽  
Antonio Masiello ◽  
Carmela Vetromile ◽  
Mariano Nappa ◽  
...  

Abstract The wastewater sector accounts for 25% of the global energy demand in the water sector. Since this consumption is expected to increase in the forthcoming years, energy optimization strategies are needed. A truly effective planning of energy improvement measures requires a detailed knowledge of a system, which can only be achieved through energy audit and real-time monitoring. In order to improve the identification of critical issues related to the use of energy resources within a wastewater treatment plant (WWTP), the paper shows the results of a monitoring campaign performed on a large WWTP in southern Italy. Data obtained for the audit cover a 4-year timeframe (2014–2017). Energy–environmental performance has been evaluated through the benchmarking of: system variables, specific consumptions, and operational indicators. Moreover, by using a real-time data measurement and acquisition system it has been possible to evaluate the real performance of the most energy-intensive apparatus of the plant (a turbo-blower), over a period of 8 months. The main results indicate that (a) the plant is mainly affected by a massive capture of infiltrations, working in conditions close to the maximum hydraulic capacity, (b) real-time energy measurements are necessary to accurately characterize plant consumptions and adequately assess their critical aspects.


1998 ◽  
Vol 37 (1) ◽  
pp. 347-354 ◽  
Author(s):  
Ole Mark ◽  
Claes Hernebring ◽  
Peter Magnusson

The present paper describes the Helsingborg Pilot Project, a part of the Technology Validation Project: “Integrated Wastewater” (TVP) under the EU Innovation Programme. The objective of the Helsingborg Pilot Project is to demonstrate implementation of integrated tools for the simulation of the sewer system and the wastewater treatment plant (WWTP), both in the analyses and the operational phases. The paper deals with the programme for investigating the impact of real time control (RTC) on the performance of the sewer system and wastewater treatment plant. As the project still is in a very early phase, this paper focuses on the modelling of the transport of pollutants and the evaluation of the effect on the sediment deposition pattern from the implementation of real time control in the sewer system.


2016 ◽  
Vol 35 (3) ◽  
pp. 702-716 ◽  
Author(s):  
Jenna E. Cavallin ◽  
Kathleen M. Jensen ◽  
Michael D. Kahl ◽  
Daniel L. Villeneuve ◽  
Kathy E. Lee ◽  
...  

2002 ◽  
Vol 46 (1-2) ◽  
pp. 29-33 ◽  
Author(s):  
A. Duine ◽  
S. Kunst

Over a period of 6 months, pilot plant investigations were carried out with the purpose of bulking sludge control with different aerobic selectors. The wastewater was dominated by industrial dischargers, containing volatile fatty acids up to 450 mg/l. With complete-mix-selectors it was not possible to achieve a stable SVI below 150 ml/g. The bulking sludge could only be controlled with a sectionalized selector (HRT 5–8 minutes per section). The SVI decreased to values below 100 ml/g. Shock-loads and increased VFA-concentrations (by dosing NaC2H3OO) did not cause filamentous growth.


Sign in / Sign up

Export Citation Format

Share Document