Assessing energy performance and critical issues of a large wastewater treatment plant through full-scale data benchmarking

2019 ◽  
Vol 80 (8) ◽  
pp. 1421-1429 ◽  
Author(s):  
Maria Rosa di Cicco ◽  
Antonio Spagnuolo ◽  
Antonio Masiello ◽  
Carmela Vetromile ◽  
Mariano Nappa ◽  
...  

Abstract The wastewater sector accounts for 25% of the global energy demand in the water sector. Since this consumption is expected to increase in the forthcoming years, energy optimization strategies are needed. A truly effective planning of energy improvement measures requires a detailed knowledge of a system, which can only be achieved through energy audit and real-time monitoring. In order to improve the identification of critical issues related to the use of energy resources within a wastewater treatment plant (WWTP), the paper shows the results of a monitoring campaign performed on a large WWTP in southern Italy. Data obtained for the audit cover a 4-year timeframe (2014–2017). Energy–environmental performance has been evaluated through the benchmarking of: system variables, specific consumptions, and operational indicators. Moreover, by using a real-time data measurement and acquisition system it has been possible to evaluate the real performance of the most energy-intensive apparatus of the plant (a turbo-blower), over a period of 8 months. The main results indicate that (a) the plant is mainly affected by a massive capture of infiltrations, working in conditions close to the maximum hydraulic capacity, (b) real-time energy measurements are necessary to accurately characterize plant consumptions and adequately assess their critical aspects.

1998 ◽  
Vol 37 (1) ◽  
pp. 347-354 ◽  
Author(s):  
Ole Mark ◽  
Claes Hernebring ◽  
Peter Magnusson

The present paper describes the Helsingborg Pilot Project, a part of the Technology Validation Project: “Integrated Wastewater” (TVP) under the EU Innovation Programme. The objective of the Helsingborg Pilot Project is to demonstrate implementation of integrated tools for the simulation of the sewer system and the wastewater treatment plant (WWTP), both in the analyses and the operational phases. The paper deals with the programme for investigating the impact of real time control (RTC) on the performance of the sewer system and wastewater treatment plant. As the project still is in a very early phase, this paper focuses on the modelling of the transport of pollutants and the evaluation of the effect on the sediment deposition pattern from the implementation of real time control in the sewer system.


2016 ◽  
Vol 35 (3) ◽  
pp. 702-716 ◽  
Author(s):  
Jenna E. Cavallin ◽  
Kathleen M. Jensen ◽  
Michael D. Kahl ◽  
Daniel L. Villeneuve ◽  
Kathy E. Lee ◽  
...  

1994 ◽  
Vol 30 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Andrea G. Capodaglio

Wastewater treatment plant automation and real-time control have become important topics of research and development. Real-time control is nowadays considered a desirable goal for medium- to large-sized utilities for attaining better treatment efficiencies and improved compliance with discharge permit limitations. For an efficient implementation, real-time control must be supported by adequate modelling methodologies that take into full account the dynamic properties of the treatment system. This paper evaluates the requirements of such applications and the properties of available modelling approaches. Some applications examples are discussed.


2009 ◽  
Vol 76 (3) ◽  
pp. 715-723 ◽  
Author(s):  
Theng-Theng Fong ◽  
Mantha S. Phanikumar ◽  
Irene Xagoraraki ◽  
Joan B. Rose

ABSTRACT Enteric viruses are important pathogens found in contaminated surface waters and have previously been detected in waters of the Great Lakes. Human adenoviruses were monitored because of their high prevalence and persistence in aquatic environments. In this study, we quantified adenoviruses in wastewater, surface water, and combined sewer overflows (CSOs) by real-time PCR. Between August 2005 and August 2006, adenovirus concentrations in raw sewage, primary-treated effluent, secondary-treated effluent, and chlorinated effluent from a wastewater treatment plant in Michigan were examined. CSO samples (n = 6) were collected from a CSO retention basin in Grand Rapids, MI. Adenoviruses were detected in 100% of wastewater and CSO discharge samples. Average adenovirus DNA concentrations in sewage and CSOs were 1.15 × 106 viruses/liter and 5.35 × 105 viruses/liter, respectively. Adenovirus removal was <2 log10 (99%) at the wastewater treatment plant. Adenovirus type 41 (60% of clones), type 12 (29%), type 40 (3%), type 2 (3%), and type 3 (3%) were isolated from raw sewage and primary effluents (n = 28). Six of 20 surface water samples from recreational parks at the lower Grand River showed virus concentrations above the real-time PCR detection limit (average, 7.8 × 103 viruses/liter). This research demonstrates that wastewater effluents and wastewater-impacted surface waters in the lower Grand River in Michigan contain high levels of viruses and may not be suitable for full-body recreational activities. High concentrations of adenovirus in these waters may be due to inefficient removal during wastewater treatment and to the high persistence of these viruses in the environment.


2017 ◽  
Vol 12 (4) ◽  
pp. 848-856 ◽  
Author(s):  
Z. Gazsó ◽  
F. Házi ◽  
I. Kenyeres ◽  
L. Váci

Abstract A dynamic simulation model has been developed and validated for the 1.4 million p.e. capacity Budapest Central Wastewater Treatment Plant to support intensification, process development and risk assessment. By the integration of both the biological and physico-chemical processes the technological design of separated units becomes possible as well as the exploration of the connections within the system. The calibration of the model parameters for an operating treatment plant is the key requirement for the proper application of dynamic simulation tool to optimize operational and maintenance conditions and specify the potential development areas. We have done a one-year period of validation which included sensitivity analysis and the simulation of time intervals in the same way as in the calibration process. At the same time we investigated the suitability of the simulation system for real-time operation optimization. As conclusion we ascertained that due to the computational power necessity of a properly detailed model, it is not applicable for real-time operation optimization, nevertheless it is suitable for the detection of the system reactions for long-term changes of the influent load. This means that a properly functioning model is applicable for indicating the development directions.


Author(s):  
Andri Taufick Rizaluddin ◽  
Henggar Hardiani

In general, industries that use water in their production process will produce wastewater which usually contains a lot of polluting contaminants. It will affects the surrounding environment by contaminating the water bodies, which will adversely affect the health life of all living beings. Pollution that occurs in the some rivers in Indonesia has begun to raise concern for Indonesian Goverment. Some of the river locations already have heavy poluted status. The pollution is mostly caused by industrial waste and domestic waste along the river. Treatment plants for wastewater effluents are mandatory for any industry which discharges their wastewater effluents into the environment. Information on monitoring the quality of industrial wastewater is very important to be perceived by examining changes in water quality condition that are getting better or worse. It is necessary to develop a system that monitors the condition of industrial wastewater. Industrial wastewater monitoring is a device system that collects real time data. Online monitoring technology is one part that plays an important role in supporting activities to control marine environmental pollution. Real‐time monitoring of wastewater quality remains an unresolved problem to the wastewater treatment industry. One of the problem in most industries in Indonesia is that the operational and performance of wastewater treatment plants (WWTP) are still not optimal, and need to be improved. The application of industrial technology concept 4.0 and automation systems in the industry is expected to improve the WWTP supervision process which has advantages such as reducing down time, reducing consumption of raw materials, reducing the energy used, increasing productivity, improving product quality and making efficient use of resources and processes, so as to reduce industrial operating costs.


Sign in / Sign up

Export Citation Format

Share Document