Research of the accumulation of railway track deformations in the section of testing of cars with an axial load of 27 tons

2017 ◽  
Vol 76 (4) ◽  
pp. 238-242 ◽  
Author(s):  
K. V. Shapet’ko ◽  
Keyword(s):  
2018 ◽  
Vol 230 ◽  
pp. 01003
Author(s):  
Oleksandr Darenskiy ◽  
Eduard Bielikov ◽  
Olexii Dudin ◽  
Alina Zvierieva ◽  
Anatolii Oleshchenko

The article considers obtaining numerical values of the coefficient of subgrade reaction of wooden and reinforced concrete sleepers with axial loads up to 30-35 tons per axle. It has been concluded that using the rolling stock with axial loads of up to 35 tons per axle is necessary in order to ensure sustainable development of the railway complex. The performance of the railway track thus should be investigated in order to predict its operation in such conditions. Generally, such studies are performed using numerical methods. One of the parameters that are required for such calculations is the parameter which is commonly called the coefficient of subgrade reaction. Empirical dependencies of the coefficient of subgrade reaction of wooden and reinforced concrete sleepers on the axial load and on the operating conditions of the track have been obtained. The obtained results can be used in studies of the interaction dynamics of the track of main railways with rolling stock with axial loads of 30-35 tons per axle, which will give an opportunity to provide well-grounded recommendations on the rules for the arrangement and maintenance of the track in such conditions.


2021 ◽  
pp. 111-126
Author(s):  
Oleksandr Safronov ◽  
◽  
Yurii Vodiannikov ◽  
Pavlo Khozia ◽  
Anton Mozheiko

Improving the technical level of railway transport of industrial enterprises is expressed in the introduction of advanced types of traction (locomotives and electric locomotives), four and six-axle specialized cars, including self-unloading, automation and telemechanics. To increase the productivity of quarry trains at PJSC "Kryukiv Railway Car Building Plant" a six-axle dump car model 33-7141 for quarry railway transport was designed. The car is designed for transportation from quarries of open cut hard rocks, ore and other bulk and lump cargo with density (1.75-4.0) t/m3, as well as mechanized unloading on dumping sites or crushing units of opencast mining. A distinctive feature of innovative dump cars from typical ones is the increase of cargo weight by 10 t and axial load to 271.6 (27.7) kN (ts). In this regard, the issues of assessing the braking efficiency of a quarry train with innovative dump cars that meet the requirements for railway industrial transport are becoming relevant. The article presents the study results of the braking efficiency of a quarry train composition of 10 and 14 cars. Locomotive TEM7 and unit OPE1AM with one and two motor cars were considered as traction units. The maximum permissible speeds were determined in a given range of slopes of the railway track, and the maximum possible descent was set provided that the braking distance does not exceed or will be equal to 300. As a result of research, it was found that the maximum allowable deviations ranged from 34 ‰ to 38 ‰ depending on the number of cars and traction units. The speed of trains with innovative dump trucks on the site is 42 km/h. Key words: dump car, tipping wagon, maximum slope, permissible speed, braking distance, traction unit.


2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


PCI Journal ◽  
1968 ◽  
Vol 13 (3) ◽  
pp. 12-27
Author(s):  
Robert Loov
Keyword(s):  

PCI Journal ◽  
1966 ◽  
Vol 12 (3) ◽  
pp. 52-59 ◽  
Author(s):  
Paul Zia ◽  
E. C. Guillermo

2020 ◽  
pp. 60-68
Author(s):  
V. A. Pyalchenkov ◽  
D. V. Pyalchenkov

Research has found that the axial load applied to the bit is distributed unevenly along the crowns of the balls. The middle crowns are the busiest. The value of the axial force perceived by a separate ring is associated with the deformation of the details of the ball joint. You can reduce the uneven loading of crowns by shifting them along the ball along the radius of the bit, placing them so that the vertical line passing through the center of the lower ball of the lock bearing passes through the middle of the gap between the crowns of neighboring balls. The bits with the new option of placing the teeth on the balls were tested on the stand and in industrial conditions. For the bits of this design, the axial load was distributed more evenly over the crowns, which allowed increasing the efficiency of their work.


Sign in / Sign up

Export Citation Format

Share Document