scholarly journals BRAKING EFFICIENCY OF QUARRY TRAINS WITH SIX-BOGIES DUMP CARS OF THE INCREASED AXIAL LOAD UP TO 27.7 TF

2021 ◽  
pp. 111-126
Author(s):  
Oleksandr Safronov ◽  
◽  
Yurii Vodiannikov ◽  
Pavlo Khozia ◽  
Anton Mozheiko

Improving the technical level of railway transport of industrial enterprises is expressed in the introduction of advanced types of traction (locomotives and electric locomotives), four and six-axle specialized cars, including self-unloading, automation and telemechanics. To increase the productivity of quarry trains at PJSC "Kryukiv Railway Car Building Plant" a six-axle dump car model 33-7141 for quarry railway transport was designed. The car is designed for transportation from quarries of open cut hard rocks, ore and other bulk and lump cargo with density (1.75-4.0) t/m3, as well as mechanized unloading on dumping sites or crushing units of opencast mining. A distinctive feature of innovative dump cars from typical ones is the increase of cargo weight by 10 t and axial load to 271.6 (27.7) kN (ts). In this regard, the issues of assessing the braking efficiency of a quarry train with innovative dump cars that meet the requirements for railway industrial transport are becoming relevant. The article presents the study results of the braking efficiency of a quarry train composition of 10 and 14 cars. Locomotive TEM7 and unit OPE1AM with one and two motor cars were considered as traction units. The maximum permissible speeds were determined in a given range of slopes of the railway track, and the maximum possible descent was set provided that the braking distance does not exceed or will be equal to 300. As a result of research, it was found that the maximum allowable deviations ranged from 34 ‰ to 38 ‰ depending on the number of cars and traction units. The speed of trains with innovative dump trucks on the site is 42 km/h. Key words: dump car, tipping wagon, maximum slope, permissible speed, braking distance, traction unit.

2021 ◽  
pp. 127-139
Author(s):  
Oleksandr Safronov ◽  
◽  
Yurii Vodiannikov ◽  
Olena Makeieva ◽  
Dmytro Yeskov

The main differences between the operating conditions of industrial railway transport from the main-line ones, which feature the performance of technological transportation, i.e., the transportation of goods within the local boundaries of enterprises (domestic technological transportation), and import (export) of goods to other modes of transport (external transportation). Industrial railway transport plays an important role at mining enterprises, as the working conditions of these enterprises are not constant and getting continuously more complicated during the entire period of field development. In this regard, one of the most important factors in ensuring the train safety is the braking efficiency. The calculation of the braking efficiency of a quarry train is performed according to special rules, and the parameters of the braking process that affect the braking distance are set by coefficients. As an estimated characteristic of braking efficiency for industrial railway transport, the maximum speed is taken, at which the braking distance should be no more than 300 m, regardless of the magnitude of the slope of the railway track. For the first time it is proposed to determine the allowable speed by the iterative method using a correction factor, the choice of which is due to the fact that the relationship between speed and braking distance is described by a quadratic function. The calculation showed that in five iterations the difference between the calculated and normative values of the braking distance of 0.01 m (1 cm) is achieved, which indicates the efficiency effect of the proposed determination procedure. The software allows you to automatically perform calculated studies for a given range of values of the slopes. The results of the train calculation in a specified range of slope values are given, as well as an analytical expression for determining the maximum speed for a given arbitrary slope value. Key words: allowable speed, braking distance, iterative process, correction factor, algorithm.


2021 ◽  
Vol 20 (5) ◽  
pp. 905-923
Author(s):  
Oksana S. DROBKOVA

Subject. The article investigates the essence and salient features within the study of the industrial complex and integrated industrial structure categories. Objectives. The purpose is to research and develop definitions, study approaches to the industrial complex category, and underpin my unique interpretation. Methods. The study applies methods of analysis and synthesis, the systematization, formalization, and comparative analysis approach. Theoretical and methodological provisions contained in the works on industry development by domestic and foreign scientists, and legal documents, serve as the basis of the study. Results. I offer my interpretation of an industrial complex, as a challenging structure, represented by industrial enterprises and characterized by the stability of production cooperation chains, close interrelation of industry and regional specialization, providing for the digital transformation of industry, and subject to the environmental component. The paper identifies key properties of industrial complex, offers a classification by industry specifics, localization, diversification, and the level of State participation. Conclusions. The findings may be used as an element of theoretical basis to support management decisions on industrial complex development.


2019 ◽  
Vol 294 ◽  
pp. 01001 ◽  
Author(s):  
Serhii Arpul ◽  
Viktor Artemchuk ◽  
Mykola Babyak ◽  
Viacheslav Vasilyev ◽  
Hennadii Hetman ◽  
...  

The paper considers the issues of reducing the energy intensity of transportation at opencast mining enterprises, the relevance of which has now increased due to the rise in the cost of fuel and energy resources. It presents the study results concerning the cost structure of the electricity consumed by electric mine transport, which form the basis for the development of technical and operational measures to reduce the energy intensity of the transportation process. It is shown that the work to reduce the electricity consumption for mined rock transportation should be aimed at: Reduction of losses in the power circuits of the traction rolling stock due to the use of more advanced electric rolling stock and regulation of the degree of utilization of the installed traction power; Introduction of new contact materials for electrical circuits with the lowest possible resistivity, including for current collector plates; Introduction of measures to reduce energy consumption for power supply of auxiliary circuits; Development and implementation of rational train control techniques. The introduction of energy-saving measures should include the development and application of effective methods for calculating individual norms of energy consumption and incentives for energy saving of the employees involved in the organization of the transportation process.


2018 ◽  
Vol 230 ◽  
pp. 01003
Author(s):  
Oleksandr Darenskiy ◽  
Eduard Bielikov ◽  
Olexii Dudin ◽  
Alina Zvierieva ◽  
Anatolii Oleshchenko

The article considers obtaining numerical values of the coefficient of subgrade reaction of wooden and reinforced concrete sleepers with axial loads up to 30-35 tons per axle. It has been concluded that using the rolling stock with axial loads of up to 35 tons per axle is necessary in order to ensure sustainable development of the railway complex. The performance of the railway track thus should be investigated in order to predict its operation in such conditions. Generally, such studies are performed using numerical methods. One of the parameters that are required for such calculations is the parameter which is commonly called the coefficient of subgrade reaction. Empirical dependencies of the coefficient of subgrade reaction of wooden and reinforced concrete sleepers on the axial load and on the operating conditions of the track have been obtained. The obtained results can be used in studies of the interaction dynamics of the track of main railways with rolling stock with axial loads of 30-35 tons per axle, which will give an opportunity to provide well-grounded recommendations on the rules for the arrangement and maintenance of the track in such conditions.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052051
Author(s):  
E Ya Bubnov

Abstract The article analyzes the sources of radiation of seismic and acoustic signals of railway transport. To determine the wave structure of the seismic field of freight train in the experiment, a linear antenna was used, located at a distance of 1000 m from the railway track. A fine spectral analysis of the seismic signal reveals the presence of two harmonics in the frequency range 1–6 Hz. One of the dominant in amplitude discrete coincides in frequency with the harmonic of the acoustic signal, which indicates the refraction of the acoustic wave into a solid medium at the location of the seismic sensor. The source of the infrasonic signal at the specified frequency can be the resonant oscillation of the car on the spring suspension elasticity. The second discrete at a frequency of 2.7 Hz remains unchanged during the movement of various trains and is even present in microseismic noise, which indicates the imposition of a layered structure of a solid medium. The propagation velocity of this harmonic of the seismic signal is less than the velocity of sound. The totality of the marked features makes it possible to identify this wave with the surface wave formed by the layer.


Author(s):  
Frantisek Bures

In the report the author offers a mathematical description of the model of the dynamics of the railway autonomous traction module. The autonomous traction module is a multi-mass complex system moving on a railway track. The mathematical model takes into account the parameters and types of connections between the solids of the system, as well as takes into account the sliding forces between the wheels and rails. The mathematical model developed by the author can be applied at theoretical researches of innovative designs of autonomous traction means on railway transport.


2019 ◽  
Vol 78 (1) ◽  
pp. 19-26
Author(s):  
Yu. M. Lazarenko ◽  
D. N. Arshintsev ◽  
O. N. Nazarov ◽  
Yu. S. Kireeva

The article presents the content and results of a set of studies on the scientific and methodological support for the modernization of structures and devices built according to the old loading gauge standards or its expired durability, the entire 1520 (1524) mm gauge railway network under the loading gauge standard T for rolling stock, allowing to increase axle and running loads of cars and due to this — the mass of trains, as well as solve the global problem that arose in the middle of the last century to increase the efficiency of the most important branch of Russia — railway transport. Variants of increased loading gauges were developed (Тпр for any rolling stock, Тц for tanks, Та — for electric rolling stock, Тб — for passenger cars), which were included in the GOST 9238 – 83 “Loading gauges of railway rolling stock and structure clearance” and Ministry of railways instructions (no. TsP/4425 — for clearance of structures; no. TsV/4422 — for loading gauge of the rolling stock and no. TsD/4172 — for transportation of oversized and heavy (nonstandard) freights), as well as zonal and flatcars loading gauges. Scientific and methodological studies carried out by the institute during the half-century period (mid-XX — early XXI) identified structures and devices that limit the use of rolling stock of loading standard T, its elimination during 1982 – 2005, as well as transition of industrial enterprises to the production of new freight and passenger cars of increased loading standards Тпр and Та, developed by the Institute. This identification was made on the basis of the overall classification of all railway infrastructure and access railroads of the former USSR. New regulatory framework for railway rolling stock loading gauges and structure clearance (GOST 9238 – 2013) was developed based on a global survey of actual dimensions of all structures and infrastructure devices of the 1520 (1524) mm gauge railways (area 1520). Railway Research Institute of the Ministry of Railway Transport (currently, JSC “VNIIZhT”) made scientific and methodological support for the modernization of infrastructure objects, exhausted its life span for the 100-year period of operation. Scientific and methodological support carried out by the Institute allowed the creation and operation of rolling stock with an increased loading gauge standard Тпр: for freight traffic — with increased running loads by 2 ton/m or more compared to European railways; for passenger traffic — more comfortable and 39 % more spacious double-deck compartment cars. Increasing the loading gauge of the rolling stock provides increased efficiency of rail transport by increasing productivity, reducing the required fleet of cars for the transportation of equal volumes as well as operating costs. At the same time achieved annual total economic effect amounts to 2,205 billion rubles. Introduction of the flatcar loading gauge contributes to the organization of transportation of heavy trucks by rail and, therefore, improve the environmental situation. 


2020 ◽  
pp. 18-23
Author(s):  
Olga Degtiareva

Introduction. Ukrainian manufacturing enterprises face a variety of challenges related to energy efficient production. There are different ways to reach the energy efficiency, e. g. improve energy savings, reduce energy intensity, strengthen energy security, and so on. The KPI-models allow industrial enterprises, firstly, to choose quantitative benchmarks for enhancement their activities in the energy sector, and secondly, to get progress in reaching selected objectives. Purpose. The study aims to develop methodological approach to the formation of strategic KPI-models that can be used for development of different scenarios in energy sector of industrial enterprise. Methodology. The methodological basis of the study encompasses the theory of controlling concept, approaches to the development and implementation of KPIs, interdisciplinary and systematic approaches of the energy efficient production study. Results. The article examines the new direction of the controlling concept (also called management control in the English speaking area) named energy controlling. It aims to increase the efficiency, transparency and validity of management decisions in the energy sector. The author has analyzed different methodological approaches to choose the energy KRIs and she has proposed the methodological basis for development of strategic KRI-models for the energy sector of an industrial enterprise. There are also some examples of strategic KPI-models for different scenarios.


Author(s):  
Naim Kuka ◽  
Caterina Ariaudo ◽  
Riccardo Verardi ◽  
João Pombo

The rail infrastructure and the track components are expensive assets with long life spans and high maintenance costs. The cost efficiency, performance and punctuality of train operations heavily depend on the track conditions. Ideally, the railway track would be completely smooth providing continuous support to the rolling stock running on it. In practice, however, the infrastructure cannot be installed without irregularities. These defects will increase over time due to the service loads imposed by the railway vehicles. The aim of this work is to use advanced computational tools to predict how the vehicles will respond to changing levels of track defects. For this purpose, the track and its maintenance conditions are characterized in realistic operation scenarios and modelled with detail in order to enable studying the interaction loads that are imposed to the vehicles by the track conditions. The presented methodology enables to identify the track health indexes that have higher influence on the dynamic loads transmitted to the rolling stock. It was observed that the track layout, track irregularities and degradation of the rails have the larger influence on the vehicle-track interaction loads with consequences in terms of safety and maintenance costs. In this way, this work contributes to the development of solutions with technological relevance, giving answer to the industry’s most recent needs in terms of reducing the maintenance costs and decreasing the incidents that cause traffic disruptions, contributing to improve the competitiveness of the railway transport.


Sign in / Sign up

Export Citation Format

Share Document