Opinion 2436 (Case 3682) – The work “The White-cheeked Geese: Branta canadensis, B. maxima, B. ‘lawrensis’, B. hutchinsii, B. leucopareia, and B. minima. Taxonomy, ecophysiographic relationships, biogeography, and evolutionary considerations, Volume 1, Eastern taxa; Volume 2, Western taxa, biogeogra

2019 ◽  
Vol 76 (1) ◽  
pp. 146
Keyword(s):  
2018 ◽  
Vol 7 (9) ◽  
Author(s):  
Allison L. Denny ◽  
Susan E. Arruda

Draft genomes of two strains of Escherichia coli, FP2 and FP3, isolated from the feces of the Canada goose (Branta canadensis), were sequenced. Genome sizes were 5.26 Mb with a predicted G+C content of 50.54% (FP2) and 5.07 Mb with a predicted G+C content of 50.41% (FP3).


1981 ◽  
Vol 59 (3) ◽  
pp. 493-497 ◽  
Author(s):  
Robert C. Skene ◽  
O. Remmler ◽  
M. A. Fernando

A survey of adult Canada geese, Branta canadensis, at Kortright Waterfowl Park in Guelph, Ontario, Canada, showed that 20% of the geese sampled passed small numbers of coccidial oocysts throughout the winter months (October 1975 to February 1976). Four species of coccidia, Eimeria hermani Farr, 1953, E. magnalabia Levine, 1951, E. truncata (Raillet and Lucet, 1891) Wasielewski, 1904, and Tyzzeria parvula (Kotlan, 1933) Klimes, 1963, were identified from the samples examined. A hitherto undescribed Isospora sp. was found in 5% of the fecal samples. It is named Isospora anseris and described as a new species. In the spring goslings were found to be passing E. hermani oocysts between the 8th and 13th day of hatching.


The Auk ◽  
1934 ◽  
Vol 51 (4) ◽  
pp. 513-514
Author(s):  
William Johnston Howard

The Auk ◽  
1988 ◽  
Vol 105 (4) ◽  
pp. 749-755 ◽  
Author(s):  
John P. Badgerow

Abstract I analyzed formations of Canada Geese (Branta canadensis) with a single, direct method of testing predictions from multiple hypotheses. The results support both energetic (aerodynamic) advantage and orientation communication through visual contact as functions of this complex behavior. Comparison of observed positioning patterns with criteria for optimal function suggests priority may be given to the maximization of energy savings within limits imposed by environmental and other constraints.


2015 ◽  
Vol 129 (3) ◽  
pp. 229
Author(s):  
Richard C. Cotter

The Atlantic population of Canada Geese (Branta canadensis) nests in the coastal lowlands of eastern Hudson Bay and southwestern Ungava Bay in Nunavik, Quebec. Although many aspects of the nesting ecology of this and other northern populations of Canada Geese have been studied and published, there is a paucity of information on the use of brood-rearing and moulting sites. Based on 18 years of band and recapture data from an ongoing banding program, this paper presents the distribution of brood-rearing and moulting sites and the use of these sites over time. Along Hudson Bay and Ungava Bay, the most important brood-rearing and moulting areas are the stretch of coastal lowlands between the Mariet River and Shallow Bay and between Rivière aux Feuilles and Virgin Lake, respectively. Of all adult geese captured during the banding program (n = 41 924), 7.5% (standard error [SE] 0.13%) were recaptures, that is, birds that had previously been caught and banded; annual recapture rates ranged from 5.1% to 11.4%. The mean and median distances between the site of first recapture and the original site of capture were 4.3 km (SE 0.22 km) and 1.5 km, respectively. Juveniles moved, on average, 5.4 km farther than adults and males moved 1.4 km farther than females. Among geese banded as juveniles, males moved twice as far as females: 11.5 km versus 5.7 km.


The Auk ◽  
1921 ◽  
Vol 38 (4) ◽  
pp. 599-599
Author(s):  
T. Gilbert Pearson
Keyword(s):  

1970 ◽  
Vol 48 (2) ◽  
pp. 235-240 ◽  
Author(s):  
Kees Vermeer

Canada goose clutches situated on islands in Dowling Lake and Lake Newell, Alberta, were checked from laying to hatching. Egg-laying intervals averaged 1.87 days and incubation periods 26.8 days. The distribution of nests showed a significant deviation from randomness in the direction of uniform spacing. Causes of extensive hatching failure at Dowling Lake were predation and desertion. Predation by coyotes was facilitated by low water levels. A preference for nesting on islands appears to be a mechanism to counteract mammalian predation.


Sign in / Sign up

Export Citation Format

Share Document