An Analysis of Function in the Formation Flight of Canada Geese

The Auk ◽  
1988 ◽  
Vol 105 (4) ◽  
pp. 749-755 ◽  
Author(s):  
John P. Badgerow

Abstract I analyzed formations of Canada Geese (Branta canadensis) with a single, direct method of testing predictions from multiple hypotheses. The results support both energetic (aerodynamic) advantage and orientation communication through visual contact as functions of this complex behavior. Comparison of observed positioning patterns with criteria for optimal function suggests priority may be given to the maximization of energy savings within limits imposed by environmental and other constraints.

2004 ◽  
Vol 126 (4) ◽  
pp. 873-879 ◽  
Author(s):  
P. Seiler ◽  
A. Pant ◽  
J. K. Hedrick

Flying in formation improves aerodynamic efficiency and, consequently, leads to an energy savings. One strategy for formation control is to follow the preceding vehicle. Many researchers have shown through simulation results and analysis of specific control laws that this strategy leads to amplification of disturbances as they propagate through the formation. This effect is known as string instability. In this paper, we show that string instability is due to a fundamental constraint on coupled feedback loops. The tradeoffs imposed by this constraint imply that predecessor following is an inherently poor strategy for formation flight control. Finally, we present two examples that demonstrate the theoretical results.


1981 ◽  
Vol 59 (3) ◽  
pp. 493-497 ◽  
Author(s):  
Robert C. Skene ◽  
O. Remmler ◽  
M. A. Fernando

A survey of adult Canada geese, Branta canadensis, at Kortright Waterfowl Park in Guelph, Ontario, Canada, showed that 20% of the geese sampled passed small numbers of coccidial oocysts throughout the winter months (October 1975 to February 1976). Four species of coccidia, Eimeria hermani Farr, 1953, E. magnalabia Levine, 1951, E. truncata (Raillet and Lucet, 1891) Wasielewski, 1904, and Tyzzeria parvula (Kotlan, 1933) Klimes, 1963, were identified from the samples examined. A hitherto undescribed Isospora sp. was found in 5% of the fecal samples. It is named Isospora anseris and described as a new species. In the spring goslings were found to be passing E. hermani oocysts between the 8th and 13th day of hatching.


2015 ◽  
Vol 129 (3) ◽  
pp. 229
Author(s):  
Richard C. Cotter

The Atlantic population of Canada Geese (Branta canadensis) nests in the coastal lowlands of eastern Hudson Bay and southwestern Ungava Bay in Nunavik, Quebec. Although many aspects of the nesting ecology of this and other northern populations of Canada Geese have been studied and published, there is a paucity of information on the use of brood-rearing and moulting sites. Based on 18 years of band and recapture data from an ongoing banding program, this paper presents the distribution of brood-rearing and moulting sites and the use of these sites over time. Along Hudson Bay and Ungava Bay, the most important brood-rearing and moulting areas are the stretch of coastal lowlands between the Mariet River and Shallow Bay and between Rivière aux Feuilles and Virgin Lake, respectively. Of all adult geese captured during the banding program (n = 41 924), 7.5% (standard error [SE] 0.13%) were recaptures, that is, birds that had previously been caught and banded; annual recapture rates ranged from 5.1% to 11.4%. The mean and median distances between the site of first recapture and the original site of capture were 4.3 km (SE 0.22 km) and 1.5 km, respectively. Juveniles moved, on average, 5.4 km farther than adults and males moved 1.4 km farther than females. Among geese banded as juveniles, males moved twice as far as females: 11.5 km versus 5.7 km.


1970 ◽  
Vol 48 (2) ◽  
pp. 235-240 ◽  
Author(s):  
Kees Vermeer

Canada goose clutches situated on islands in Dowling Lake and Lake Newell, Alberta, were checked from laying to hatching. Egg-laying intervals averaged 1.87 days and incubation periods 26.8 days. The distribution of nests showed a significant deviation from randomness in the direction of uniform spacing. Causes of extensive hatching failure at Dowling Lake were predation and desertion. Predation by coyotes was facilitated by low water levels. A preference for nesting on islands appears to be a mechanism to counteract mammalian predation.


1976 ◽  
Vol 54 (5) ◽  
pp. 634-643 ◽  
Author(s):  
Sherwin S. Desser ◽  
Andrée K. Ryckman

The development of Leucocytozoon simondi was studied in naturally and experimentally infected Branta canadensis maxima, Branta canadensis interior, and Anser domesticus. The number of mature round gametocytes in the peripheral blood of the Canada geese increased between days 9 and 15 post exposure (PE) and decreased rapidly thereafter. Mean peak parasitemias recorded on day 13 PE were (per 1000 red blood cells (RBC)): 8 gametocytes in B.c. maxima, 16 gametocytes in B.c. interior, and 17 gametocytes in A. domesticus. About 3 weeks PE, gametocytes disappeared from the peripheral circulation and were not observed again during the autumn, winter, and spring in birds kept in the laboratory.Haematocrit determinations in the Canada geese revealed a low fluctuating anemia during the primary infection which subsided by day 21 PE. A more severe anemia was recorded in A. domesticus with a mean low packed RBC value of about 18% on day 11 PE. Immature and mature hepatic schizonts were observed in the Canada and domestic geese between days 3 and 8 PE. Neither megaloschizonts nor elongate gametocytes were seen. Clinical signs, pathology, and mortality commonly associated with L. simondi infection in ducks were not observed. Hypotheses are advanced to explain reports of severe pathogenesis associated with L. simondi infections in Canada geese in other localities.


2013 ◽  
Vol 13 (6) ◽  
pp. 382-384 ◽  
Author(s):  
Veerle Dickx ◽  
Isabelle D. Kalmar ◽  
Paul Tavernier ◽  
Daisy Vanrompay

2009 ◽  
Vol 46 (5) ◽  
pp. 966-970 ◽  
Author(s):  
J. L. Neufeld ◽  
C. Embury-Hyatt ◽  
Y. Berhane ◽  
L. Manning ◽  
S. Ganske ◽  
...  

Susceptibility of Canada geese ( Branta canadensis) to highly pathogenic avian influenza (HPAI) virus (H5N1) infection was studied by inoculating 10 naïve (antibody-negative) animals (5 adults and 5 juveniles) with A/chicken/Vietnam/14/05 (H5N1) virus. In the adults, 1 of 5 became infected, and 4 of 5 remained normal; in the juvenile group, 5 of 5 became infected. The pathology observed in the affected animals was similar to that reported in natural occurrences. Peripheral and parasympathetic nervous systems were examined and found infected, as well as cerebrospinal fluid-contacting neurons. In some locations with significant virus infection in cells, the expected inflammatory reaction was absent or very mild. Immunohistochemistry was used to locate influenza A virus nucleoprotein in brain, spinal cord, respiratory and digestive systems, pancreas, heart, and peripheral and parasympathetic nervous systems. Further studies are needed to explain age-related differences in susceptibility.


Sign in / Sign up

Export Citation Format

Share Document