scholarly journals Facies architecture related to sea-level changes of the Upper Cretaceous (Santonian) Taneichi Formation, northeast Japan: evidence of actual sea-level fluctuation during the Late Cretaceous

2004 ◽  
Vol 80 (5) ◽  
pp. 230-235 ◽  
Author(s):  
Koji YAGISHITA
2020 ◽  
Author(s):  
François-Nicolas Krencker ◽  
Alicia Fantasia ◽  
Mohamed El Ouali ◽  
Lahcen Kabiri ◽  
Stéphane Bodin

<p><span>Sea-level fluctuation is an important parameter controlling the sedimentation in deep-marine environments and influenced also the expansion of oxygen-depleted conditions in neritic settings during oceanic anoxic events (OAEs). Despite this fundamental role, sea-level fluctuation remains on a short timescale (<1 Myr) one of the least constrained parameters for numerous OAEs. Here we refine the sequence stratigraphic framework for the uppermost Pliensbachian–Toarcian with a special focus on the Toarcian OAE interval. This study is based on sedimentological and total organic carbon isotope data used to correlate 16 sections located in the central High Atlas (Morocco). Palinspastically, those sections formed a 50-kilometer proximal–distal transect along the northern Gondwana continental shelf, which allow reconstructing the shoreline migration through time and space. Our sequence stratigraphic interpretation is then compared to the geochemical signals (e.g. detrital index, chemical index of alteration) measured on samples collected in deep-environment settings from numerous basins distributed worldwide. Our study shows that the relative sea-level changes recorded in Morocco can be correlated over large distances across those basins, indicating that the relative sea-level changes were driven by eustatic fluctuations. This study gives insights into the relationship between relative sea-level fluctuations and the geochemical record.</span></p>


1974 ◽  
Vol 4 (3) ◽  
pp. 282-289 ◽  
Author(s):  
G. Einsele ◽  
D. Herm ◽  
H.U. Schwarz

In an area regarded to be very favorable for the study of Holocene sea level changes one or several eustatic (?) oscillations of sea have been found using sedimentological and ecological methods. After a maximum of +3 m during the Nouakchottian stage (= Middle Flandrian or Late Atlantic) about 5500 YBP a drop of sea to −3.5 ± 0.5 m about 4100 YBP is testified by stromatolitic algae indicating the former sea level within the tidal zone with high accuracy. This evidence is supported by the observation of post-Nouakchottian regressive and transgressive geologic sequences, by buried beach deposits and flooded hardgrounds, post-Nouakchottian marine terraces of different height and age, the cutting off of one large and several small bays from the open sea, etc. Possibly one or two smaller oscillations followed between 4000 and 1500 YBP (derived sea level curve Fig. 3).


During the Pleistocene, a period covering the last two million years, sea level is known to have risen above and fallen below the present sea level. The evidence for such fluctuations comes from marine and estuarine sediments, including beaches, far above present sea level and from freshwater sediments, beaches and valley systems now submerged. In southeast England there are Lower Pleistocene marine deposits at 183 m O.D . at Netley Heath in Surrey and upper Pleistocene freshwater sediments at - 35 m O.D . in the Channel. Thus we have in this area evidence of an amplitude of sea-level fluctuation relative to the present sea level of some 218 m. While such limits of relative sea-level fluctuation are not so difficult to identify, very considerable difficulties arise in determining the relation of sea-level change to the passage of time, and in the analysis of sea-level change - whether it be a real lowering of sea level relative to land, or an uplift of land relative to sea level. Let us briefly consider each of these two fields of difficulty. To date a particular stand of sea level, we have to know the relation of a particular deposit, say beach or shallow marine sediment to sea level at the time, and we have to know the correlation of this deposit to a part of the sequence of geological events which make up the Pleistocene. Both of these aspects may be problematical. It may not be certain what depth of water a deposit was formed in, and the age and correlation of the deposit may be doubtful.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1099
Author(s):  
Ahmed Mansour ◽  
Thomas Gentzis ◽  
Michael Wagreich ◽  
Sameh S. Tahoun ◽  
Ashraf M.T. Elewa

Widespread deposition of pelagic-hemipelagic sediments provide an archive for the Late Cretaceous greenhouse that triggered sea level oscillations. Global distribution of dinoflagellate cysts (dinocysts) exhibited a comparable pattern to the eustatic sea level, and thus, considered reliable indicators for sea level and sequence stratigraphic reconstructions. Highly diverse assemblage of marine palynomorphs along with elemental proxies that relate to carbonates and siliciclastics and bulk carbonate δ13C and δ18O from the Upper Cretaceous Abu Roash A Member were used to reconstruct short-term sea level oscillations in the Abu Gharadig Basin, southern Tethys. Additionally, we investigated the relationship between various palynological, elemental, and isotope geochemistry parameters and their response to sea level changes and examined the link between these sea level changes and Late Cretaceous climate. This multiproxy approach revealed that a long-term sea-level rise, interrupted by minor short-term fall, was prevalent during the Coniacian-earliest Campanian in the southern Tethys, which allowed to divide the studied succession into four complete and two incomplete 3rd order transgressive-regressive sequences. Carbon and oxygen isotopes of bulk hemipelagic carbonates were calibrated with gonyaulacoids and freshwater algae (FWA)-pteridophyte spores and results showed that positive δ13Ccarb trends were consistent, in part, with excess gonyaulacoid dinocysts and reduced FWA-spores, reinforcing a rising sea level and vice versa. A reverse pattern was shown between the δ18Ocarb and gonyaulacoid dinocysts, where negative δ18Ocarb trends were slightly consistent with enhanced gonyaulacoid content, indicating a rising sea level and vice versa. However, stable isotope trends were not in agreement with palynological calibrations at some intervals. Therefore, the isotope records can be used as reliable indicators for reconstructing changes in long-term sea level rather than short-term oscillations.


2021 ◽  
Author(s):  
Isidoros Kampolis ◽  
Vasilios Skliros ◽  
Stavros Triantafyllidis

<p>The present study examines the Quaternary evolution of the Selinitsa coastal cave in SW Peloponnese, in an attempt to provide new insights on the paleogeographical and paleoclimatological conditions of the Eastern Mediterranean Sea. The entrance of Selinitsa Cave is located +18 m above present sea level (a.p.s.l.) on the eastern coast of Messiniakos Gulf (SW Peloponnese), an area of constant uplift since Middle Pleistocene. Considering the phreatic origin of Selinitsa and the presence of sea level indicators at its entrance (biological and geomorphological markers such as tidal notches and <em>Lithophaga</em> borings), all together qualify the cave suitable for the study of former sea level changes and more particularly, those during the last interglacial period. The MIS 5e is considered the most suitable geological period for the estimation of future sea level rise due to the plethora of geological data at-or-near the coastal zone combined to sea-level fluctuation circles from Middle Pleistocene to-date. Previous results from Selinitsa Cave place the sea level of the latest phase of the last interglacial at +18 m a.p.s.l.</p><p>The Eastern Mediterranean is the least studied area relative to the Western Mediterranean, regarding sea level changes during Marine Isotope Stage 5e (MIS 5e). In order to reconstruct the paleogeography of the area and shed light on the climatic conditions of this period, our study involved geological mapping, field measurements and identification of geomorphological features (marine terraces, coastal caves and former sedimentary tidal environments). Additionally, 3D mapping of Selinitsa was conducted in order to precisely define its relative location in respect to the present sea level. Moreover, X-ray diffraction, optical microscopy, mineralogy and major and trace element geochemistry of speleothems and clastic sediments found in the inner part of Selinitsa were also employed and combined to the aforementioned geomorphological data.</p><p>The objective of the study is to provide a model for the development and the paleoclimatic conditions of the Selinitsa Cave during Late Pleistocene, how sea-level affected the aforementioned system, and finally provide an estimate of sea-level fluctuation over the last 125 ka.</p>


2006 ◽  
Vol 25 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Mercedes B. Prámparo ◽  
Oscar H. Papú

Abstract. The Late Cretaceous Atlantic transgression in southern South America is recorded in western Argentina in the upper part of the Malargüe Group. The Cerro Butaló section outcrops in the south of Mendoza Province and comprises sediments attributable to the Jagüel and Roca formations. Well-preserved palynological associations were recovered from this section. Only the marine associations – dinoflagellate cysts, acritarchs and green algae – are considered in this article. A Late Maastrichtian age is suggested for the Roca and Jagüel formations based on the presence of Deflandrea galeata and Disphaerogena carposphaeropsis in the lower part of the section and Glaphyrocysta perforata in the upper part of the section and the absence of any Danian cosmopolitan markers. Variations in dinoflagellate cyst species diversity throughout the section permit recognition of two intervals that are probably related to different palaeoenvironmental conditions connected with episodes of sea-level fluctuation.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


Sign in / Sign up

Export Citation Format

Share Document