scholarly journals Influence of Deacetylated Chitin 50-TYPE I Collagen Complex Gel to Bone Marrow-Derived Mesenchymal Cells

2006 ◽  
Vol 50 (4) ◽  
pp. 542-551
Author(s):  
Hideaki Kato ◽  
Katsutoshi Wakabayashi ◽  
Huminori Iwasa ◽  
Tadaharu Kawawa ◽  
Tetsuhiko Tachikawa
MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Senthilkumar Muthusamy ◽  
Asha V Nath ◽  
Shilpa Ajit ◽  
Anil K PR

Introduction: Use of cardiac mesenchymal cells (CMCs) has been shown to improve cardiac function following myocardial infarction. Main drawback in cardiac cell therapy is the major loss of injected cells within few hours. Increase the retention of these injected cells could increase their efficacy, where cardiac patches with various cell types showed better outcome. Among, collagen patch plays lead role as a cell-laden matrix in cardiac tissue engineering. Creating a detailed understanding of how collagen matrix changes the cellular phenotype could provide seminal insights to regeneration therapy. Hypothesis: Growing CMCs in three dimensional (3D) collagen matrix could alter the expression of extracellular matrix (ECM) and adhesion molecules, which may enhance their efficacy. Methods: The bovine type I collagen was chemically modified and solubilized in culture medium with photo-initiator. The mouse CMCs were isolated and resuspended in collagen solution, printed using 3D bioprinter and UV-crosslinked to form 3D-CMC construct. The 3D-CMC construct was submerged in growth medium and cultured for 48h and analyzed for the expression of ECM and adhesion molecules (n=5/group). CMCs cultured in regular plastic tissue culture dish was used as control. Results: RT profiler array showed changes in the ECM and adhesion molecules expression, specifically certain integrins and matrix metalloproteinases (MMPs) in CMCs cultured 3D collagen construct compared to 2D monolayer. Subsequent qRT-PCR analysis revealed significant (p<0.01) upregulation of integrins such as Itga2 (2.96±0.13), Itgb1 (3.18±0.2) and Itgb3 (2.4±0.27) and MMPs such as MMP13 (37.2±3.36), MMP9 (5.23±1.06) and MMP3 (7.14±2.07). Western blot analysis further confirmed significant elevation of these integrins and matrix metalloproteinases at protein level. Collagen encapsulation did not alter the expression of N-cadherin in CMCs, which is a potential mesenchymal cadherin adhesion molecule. Conclusion: Integrin αβ heterodimers transduce signals that facilitate cell homing, migration, survival and differentiation. Similarly, MMPs plays vital role in cell migration and proliferation. Our results demonstrate that the 3D-collagen Niche enhances the expression of certain integrins and MMPs in CMCs. This suggest that the efficacy of CMCs could be magnified by providing 3D architecture with collagen matrix and further in vivo experiments would reveal functional benefits from CMCs for clinical use.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Jinjin Ma ◽  
Kristen Goble ◽  
Michael Smietana ◽  
Tatiana Kostrominova ◽  
Lisa Larkin ◽  
...  

The incidence of ligament injury has recently been estimated at 400,000/year. The preferred treatment is reconstruction using an allograft, but outcomes are limited by donor availability, biomechanical incompatibility, and immune rejection. The creation of an engineered ligament in vitro solely from patient bone marrow stromal cells (has the potential to greatly enhance outcomes in knee reconstructions. Our laboratory has developed a scaffoldless method to engineer three-dimensional (3D) ligament and bone constructs from rat bone marrow stem cells in vitro. Coculture of these two engineered constructs results in a 3D bone-ligament-bone (BLB) construct with viable entheses, which was successfully used for medial collateral ligament (MCL) replacement in a rat model. 1 month and 2 month implantations were applied to the engineered BLBs. Implantation of 3D BLBs in a MCL replacement application demonstrated that our in vitro engineered tissues grew and remodeled quickly in vivo to an advanced phenotype and partially restored function of the knee. The explanted 3D BLB ligament region stained positively for type I collagen and elastin and was well vascularized after 1 and 2 months in vivo. Tangent moduli of the ligament portion of the 3D BLB 1 month explants increased by a factor of 2.4 over in vitro controls, to a value equivalent to those observed in 14-day-old neonatal rat MCLs. The 3D BLB 1 month explants also exhibited a functionally graded response that closely matched native MCL inhomogeneity, indicating the constructs functionally adapted in vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hongliang He ◽  
Xiaozhen Liu ◽  
Liang Peng ◽  
Zhiliang Gao ◽  
Yun Ye ◽  
...  

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimickedin vivoliver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.


1997 ◽  
Vol 35 (6) ◽  
pp. 433-437 ◽  
Author(s):  
K. Kusumoto ◽  
K. Besshoi ◽  
K. Fujimura ◽  
Y. Ogawa ◽  
T. Iizuka
Keyword(s):  

2021 ◽  
Vol 11 (8) ◽  
pp. 1630-1635
Author(s):  
Bin Wu ◽  
Fenghua Bai ◽  
Jianping Lin ◽  
Guangji Wang ◽  
Wentao Cai ◽  
...  

Aging affects bone marrow mesenchymal stem cells (BMSC) differentiation. PTEN12 regulates cell proliferation and apoptosis. However, whether PTEN12 affects BMSCs osteogenic differentiation during aging is unknown. Two BMSCs derived from Zempster24−/− (senescence) and Zempster24+/+ (normal) mice were cultured in vitro. Real-time PCR analysis was used to analyze PTEN12 expression. PTEN12 siRNA was transfected into senescent Zempster24-/-BMSCs and after 14 days of osteogenic induction, cell proliferation was analyzed by MTT method along with measuring expression of osteocalcin, type I collagen, RUNX2 and OPN by Real time PCR, ALP activity, and TGFβ/smad signaling protein expression by Western blot. Compared to normal BMSCs, PTEN12 level in aging BMSCs was significantly elevated, osteocalcin, type I collagen, RUNX2 and OPN mRNA level was decreased along with reduced ALP activity and TGFβ1 and Smad2 expression (P < 0.05). PTEN12 siRNA transfection into senescent BMSCs significantly down-regulated PTEN12, upregulated osteocalcin, type I collagen, RUNX2 and OPN mRNA, increased ALP activity and TGFβ1 and Smad2 expression (P <0.05). Aging increases PTEN12 level and inhibits BMSCs osteogenic differentiation. Down-regulation of PTEN12 in BMSCs during aging can promote BMSCs osteogenic differentiation by regulating TGFβ/smad signaling pathway.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Masanobu Izumikawa ◽  
Keijiro Hayashi ◽  
Mohammad Ali Akbor Polan ◽  
Jia Tang ◽  
Takashi Saito

The aim of this study was to clarify the function of amelogenin, the major protein of enamel matrix derivative, on the proliferation, differentiation, and mineralization of cultured rat bone marrow stem cells (BMSCs), toward the establishment of future bone regenerative therapies. No differences in the morphology of BMSCs or in cell numbers were found between amelogenin addition and additive-free groups. The promotion of ALPase activity and the formation of mineralized nodules were detected at an early stage in amelogenin addition group. In quantitative real-time RT-PCR, mRNA expression of osteopontin, osteonectin, and type I collagen was promoted for 0.5 hours and 24 hours by addition of amelogenin. The mRNA expression of osteocalcin and DMP-1 was also stimulated for 24 hours and 0.5 hours, respectively, in amelogenin addition group. These findings clearly indicate that amelogenin promoted the differentiation and mineralization of rat BMSCs but did not affect cell proliferation or cell morphology.


1977 ◽  
Vol 73 (3) ◽  
pp. 736-747 ◽  
Author(s):  
K Von Der Mark ◽  
H Von Der Mark

This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.


Sign in / Sign up

Export Citation Format

Share Document