A Soft Hierarchical Process Approach for Decision Making in A Supply Chain

2015 ◽  
Vol 4 (1and2) ◽  
Author(s):  
Rajeev Dhingra ◽  
Preetvanti Singh

Decision problems are usually complex and involve evaluation of several conflicting criteria (parameters). Multi Criteria Decision Making (MCDM) is a promising field that considers the parallel influence of all criteria and aims at helping decision makers in expressing their preferences, over a set of predefined alternatives, on the basis of criteria (parameters) that are contradictory in nature. The Analytic Hierarchy Process (AHP) is a useful and widespread MCDM tool for solving such type of problems, as it allows the incorporation of conflicting objectives and decision makers preferences in the decision making. The AHP utilizes the concept of pair wise comparison to find the order of criteria (parameters) and alternatives. The comparison in a pairwise manner becomes quite tedious and complex for problems having eight alternatives or more, thereby, limiting the application of AHP. This paper presents a soft hierarchical process approach based on soft set decision making which eliminates the least promising candidate alternatives and selects the optimum(potential) ones that results in the significant reduction in the number of pairwise comparisons necessary for the selection of the best alternative using AHP, giving the approach a more realistic view. A supplier selection problem is used to illustrate the proposed approach.

2019 ◽  
Vol 14 (2) ◽  
pp. 44-51
Author(s):  
Diana Sirmayunie Mohd Nasir ◽  
Nurshahira Zawawi ◽  
Suzanawati Abu Hasan

A buying decision process is one of the Multi-Criteria Decision Making (MCDM) problems faced by everyone in daily life. One example is the selection of smartphones brand in the market. Thus, the study is conducted to evaluate the most effective criteria for buying smartphones and to rank the people's preferences on smartphone based on its brand. Six criteria (price, operating system, memory, display, camera and battery) and three alternatives which are the smartphone brands (Oppo, Samsung and Apple) were chosen in the study. Two main processes were involved, which are 1) evaluate the smartphone criteria using Fuzzy Analytic Hierarchy Process (AHP) and 2) ranking the brand using Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE). Surveys and questionnaires were conducted and evaluated by decision makers who are the smartphone's users. The result showed storage memory is considered as prominent criteria in choosing a smartphone meanwhile the consumers firstly prefer Oppo, secondly Apple and thirdly Samsung. Future work in this study may use other alternatives to be ranked by considering other top models as well. Keywords: Multiple criteria decision making, smartphone brand, Fuzzy AHP, Fuzzy PROMETHEE  


Author(s):  
Ahmet Çalık ◽  
Bilge Afşar

In Turkey, since March 2020, the pandemic process caused changes in the bank selection of consumers as it affected all other activities. Prioritization of bank selection criteria is a multi-criteria decision-making (MCDM) problem with conflicting criteria. In this study, the Pythagorean fuzzy analytic hierarchy process (PFAHP) is used to prioritize the selection criteria, it is aimed to provide more freedom for decision-makers in expressing their opinions. Not only quantitative criteria such as interest rate, ATM, and number of branches, but also the environmental and social impacts of the pandemic, the nine main criteria have been determined. As a result of interviews with different sectors, it was found that the loan interest rate is the most important criterion. The results were compared with different classical and fuzzy AHP methods, and it was found that the PFAHP method produced reliable and informative results that better represented the uncertainty of the decision-making process.


2018 ◽  
Vol 4 (5) ◽  
pp. 1074 ◽  
Author(s):  
Reza Pashaei ◽  
Abdolreza S. Moghadam

Decision making for selecting an appropriate alternative among nominated alternatives is still a problem among retrofit designers. It is clear that selected alternative should comply the current codes in terms of structural criteria, but the other criteria may not be considered. The main goal of this study is to introduce a suitable method for making a decision in order to find the best alternative considering the effective criteria in retrofitting of low-rise buildings. Analytic Hierarchy Process (AHP), as a technique of Multi-Criteria Decision Making (MCDM), is compatible to solve the problem. Effective criteria have been categorized to structural, operational, economic and functional criteria and sixteen sub-criteria considered as a pattern that satisfies the entire involved group including structural and architectural engineers, contractor, client, and authorities in retrofitting of low-rise buildings. Since most of the involved criteria such as aesthetic, durability, and compatibility have fuzzy nature and cannot be compared numerically, fuzzy AHP can be a compatible method for comparison different retrofitting alternatives among both fuzzy and non-fuzzy criteria. A matrix of pair-wise comparison (MPC) is used for determining the weight of criteria and also for scoring the alternatives respect to each criterion. A Fuzzy Importance scale with Triangular Fuzzy Numbers (TFN) is applied for comparing the criteria. The method is examined by a case study and the results show the used method can help designers for selecting the appropriate alternative.


2021 ◽  
Vol 11 (4) ◽  
pp. 1660 ◽  
Author(s):  
Ivan Marović ◽  
Monika Perić ◽  
Tomaš Hanak

A way to minimize uncertainty and achieve the best possible project performance in construction project management can be achieved during the procurement process, which involves selecting an optimal contractor according to “the most economically advantageous tender.” As resources are limited, decision-makers are often pulled apart by conflicting demands coming from various stakeholders. The challenge of addressing them at the same time can be modelled as a multi-criteria decision-making problem. The aim of this paper is to show that the analytic hierarchy process (AHP) together with PROMETHEE could cope with such a problem. As a result of their synergy, a decision support concept for selecting the optimal contractor (DSC-CONT) is proposed that: (a) allows the incorporation of opposing stakeholders’ demands; (b) increases the transparency of decision-making and the consistency of the decision-making process; (c) enhances the legitimacy of the final outcome; and (d) is a scientific approach with great potential for application to similar decision-making problems where sustainable decisions are needed.


2019 ◽  
Vol 31 (5) ◽  
pp. 1235-1241
Author(s):  
Marina Badarovska Mishevska

The analytic hierarchy process (AHP) is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. The method was developed by Thomas L. Saaty in the 1970s and has been extensively studied and refined since then. It has particular application in group decision making and is used around the world in a wide variety of decision situation. Rather than prescribing a "correct" decision, the AHP helps decision makers choose one that best suits their goal and their understanding of the problem. The technique provides a comprehensive and rational framework for structuring a decision problem, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions. Decision making is the choice of one alternative, from two or more, to which the course of the activity is directed and the problem is solved. The decision-making process is a rational attempt by the manager to achieve the goals of the organizational unit. The decision-making process can be thought of as a "brain and nervous system" of an enterprise. Decisions are made when a person wants things to be different in the future. Given each specific situation, making the right decisions is probably one of the most difficult challenges for managers. Managers in day-to-day work deliver programmed and unprogrammed decisions that solve simple or complex problems. Simple decisions have an impact on the short-term performance of the enterprise, and complex decisions have an impact on the long-term future and success of the enterprise. Users of the AHP first decompose their decision problem into a hierarchy of more easily comprehended sub-problems, each of which can be analyzed independently. Once the hierarchy is built, the decision makers systematically evaluate its various elements by comparing them to each other two at a time, with respect to their impact on an element above them in the hierarchy. The AHP converts these evaluations to numerical values that can be processed and compared over the entire range of the problem. In this article, it is explained the application of the AHP method in order to evaluate and promote employees in the enterprise "X" with several criteria. The obtained results enable the manager to evaluate the employees in an objective way and make an objective decision for their promotion. Its application for selecting the best among employees, in their assessment and promotion, allows managers to use a specific and mathematical tool to support the decision. This tool not only supports and qualifies decisions, it also allows managers to justify their choice, as well as to simulate possible results.


2012 ◽  
Vol 538-541 ◽  
pp. 895-900 ◽  
Author(s):  
Han Chen Huang

A number of factors must be considered when selecting a convention site. Typically, most selections are based on the decision makers’ knowledge and experience, which may lead to biased decisions based on the decision makers’ subjective judgment. This study establishes decision-making evaluation factors and attributes for convention site selection based on a literature review. After surveying experts’ opinions using questionnaires, we employed the fuzzy analytic hierarchy process (FAHP) to analyze the weighting of the factors and attributes. The results show that of the five evaluation factors, site environment is the most important, followed by meeting and accommodation facilities, local support, extraconference opportunities, and costs. Additionally, the five most important attributes among the 20 evaluation attributes are the suitability of convention facilities, suitability and quality of local infrastructure, climate, city image, and political conflict or terrorist threats.


2019 ◽  
Vol 18 (02) ◽  
pp. 465-486 ◽  
Author(s):  
Ardalan Bafahm ◽  
Minghe Sun

The analytic hierarchy process (AHP) has been believed to be one of the most pragmatic and widely accepted methods for multi-criteria decision making. However, there have been various criticisms of this method within the last four decades. In this study, the results of AHP contradicting common expectations are examined for both the distributive and ideal modes. Specifically, conflicting priorities, conflicting decisions, and conflicting preference relations are investigated. A decision-making scenario is used throughout the paper and an illustrative example constructed from the decision-making scenario is provided to demonstrate each of the conflicting results recommended by AHP. With a parametric formulation of each unexpected result, the possibility of unexpected results of AHP is generalized irrespective of applying the distributive or ideal mode. The logic and causes of these contradictions are also analyzed. This study shows that AHP is not always reliable, and could lead the decision makers towards incorrect decisions.


Author(s):  
Dengfeng Wang ◽  
Shenhua Li

This work proposes a material selection decision-making method for multi-material lightweight body driven by performance to achieve that the right materials are used for the correct positions of the automotive body. The internal relationship between performance and mass, cross-sectional shape, wall thickness parameters, and material properties of a thin-walled structure is studied. The lightweight material indices driven by performance are then established. The lightweight material indices and material price are taken as the decision-making criteria for the material selection of automotive body components. A hybrid weighting method integrated with the analytic hierarchy process, fuzzy analytic hierarchy process, and quality function deployment is proposed. The difficulty of quantitatively evaluating the performance requirements of different components of the body is solved using the proposed weighting method combined with the numerical analytical results of the component performance under multiple operating conditions of the automotive body. Then, the weight of the decision-making criteria for material selection is calculated. Grey relational analysis is used to make multicriteria decision-making on a variety of candidate materials to select the best material for body components. After the lightweight material selection of the front longitudinal beam of the automotive body, the frontal collision safety performance of the body is effectively improved, and the mass of the front longitudinal beam is reduced by 45%. Material selection result of the front longitudinal beam indicates that the proposed material selection decision-making method can effectively achieve the fast material selection of components in different positions of the body.


2020 ◽  
Author(s):  
Falak Nawaz ◽  
Naeem Khalid Janjua

Abstract The number of cloud services has dramatically increased over the past few years. Consequently, finding a service with the most suitable quality of service (QoS) criteria matching the user’s requirements is becoming a challenging task. Although various decision-making methods have been proposed to help users to find their required cloud services, some uncertainties such as dynamic QoS variations hamper the users from employing such methods. Additionally, the current approaches use either static or average QoS values for cloud service selection and do not consider dynamic QoS variations. In this paper, we overcome this drawback by developing a broker-based approach for cloud service selection. In this approach, we use recently monitored QoS values to find a timeslot weighted satisfaction score that represents how well a service satisfies the user’s QoS requirements. The timeslot weighted satisfaction score is then used in Best-Worst Method, which is a multi-criteria decision-making method, to rank the available cloud services. The proposed approach is validated using Amazon’s Elastic Compute Cloud (EC2) cloud services performance data. The results show that the proposed approach leads to the selection of more suitable cloud services and is also efficient in terms of performance compared to the existing analytic hierarchy process-based cloud service selection approaches.


Sign in / Sign up

Export Citation Format

Share Document