scholarly journals Bifurcation Analysis of Piecewise Smooth Bimodal Maps Using Normal Form

2020 ◽  
Vol 24 (3) ◽  
pp. 137-151
Author(s):  
Z. T. Zhusubaliyev ◽  
D. S. Kuzmina ◽  
O. O. Yanochkina

Purpose of reseach. Studyof bifurcations in piecewise-smooth bimodal maps using a piecewise-linear continuous map as a normal form. Methods. We propose a technique for determining the parameters of a normal form based on the linearization of a piecewise-smooth map in a neighborhood of a critical fixed point. Results. The stability region of a fixed point is constructed numerically and analytically on the parameter plane. It is shown that this region is limited by two bifurcation curves: the lines of the classical period-doubling bifurcation and the “border collision” bifurcation. It is proposed a method for determining the parameters of a normal form as a function of the parameters of a piecewise smooth map. The analysis of "border-collision" bifurcations using piecewise-linear normal form is carried out. Conclusion. A bifurcation analysis of a piecewise-smooth irreversible bimodal map of the class Z1–Z3–Z1 modeling the dynamics of a pulse–modulated control system is carried out. It is proposed a technique for calculating the parameters of a piecewise linear continuous map used as a normal form. The main bifurcation transitions are calculated when leaving the stability region, both using the initial map and a piecewise linear normal form. The topological equivalence of these maps is numerically proved, indicating the reliability of the results of calculating the parameters of the normal form.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yue Zhang ◽  
Xue Li ◽  
Xianghua Zhang ◽  
Guisheng Yin

Epidemic models are normally used to describe the spread of infectious diseases. In this paper, we will discuss an epidemic model with time delay. Firstly, the existence of the positive fixed point is proven; and then, the stability and Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equations. Thirdly, the theory of normal form and manifold is used to drive an explicit algorithm for determining the direction of Hopf bifurcation and the stability of the bifurcation periodic solutions. Finally, some simulation results are carried out to validate our theoretic analysis.



2017 ◽  
Vol 27 (10) ◽  
pp. 1730033 ◽  
Author(s):  
Mahashweta Patra ◽  
Soumitro Banerjee

Earlier investigations have demonstrated how a quasiperiodic orbit in a three-dimensional smooth map can bifurcate into a quasiperiodic orbit with two disjoint loops or into a quasiperiodic orbit of double the length in the shape of a Möbius strip. Using a three-dimensional piecewise smooth (PWS) normal form map, we show that in a piecewise smooth system, in addition to the mechanisms reported earlier, new pathways of creation of tori with multiple loops may result from border collision bifurcations. We also illustrate the occurrence of multiple attractor bifurcations due to the interplay between the stable and the unstable manifolds. Two techniques of analyzing bifurcations of ergodic tori are available in literature: the second Poincaré section method and the Lyapunov bundle method. We have shown that these methods can explain the period-doubling and double covering bifurcations in PWS systems, but fail in some cases — especially those which result from nonsmoothness of the system. We have shown that torus bifurcations due to border collision can be explained by change in eigenvalues of the unstable fixed points.



2011 ◽  
Vol 21 (06) ◽  
pp. 1617-1636 ◽  
Author(s):  
SOMA DE ◽  
PARTHA SHARATHI DUTTA ◽  
SOUMITRO BANERJEE ◽  
AKHIL RANJAN ROY

In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence of nonsmooth period-doubling, saddle-node, and Neimark–Sacker bifurcations are derived. We show that dangerous border collision bifurcation can also occur in this map. Global bifurcations arise in connection with the occurrence of nonsmooth Neimark–Sacker bifurcation by which a spiral attractor turns into a saddle focus. The global dynamics are systematically explored through the computation of resonance tongues and numerical continuation of mode-locked invariant circles. We demonstrate the transition to chaos through the breakdown of mode-locked torus by degenerate period-doubling bifurcation, homoclinic tangency, etc. We show that in this map a mode-locked torus can be transformed into a quasiperiodic torus if there is no global bifurcation.



Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
S. S. Askar

Based on a nonlinear demand function and a market-clearing price, a cobweb model is introduced in this paper. A gradient mechanism that depends on the marginal profit is adopted to form the 1D discrete dynamic cobweb map. Analytical studies show that the map possesses four fixed points and only one attains the profit maximization. The stability/instability conditions for this fixed point are calculated and numerically studied. The numerical studies provide some insights about the cobweb map and confirm that this fixed point can be destabilized due to period-doubling bifurcation. The second part of the paper discusses the memory factor on the stabilization of the map’s equilibrium point. A gradient mechanism that depends on the marginal profit in the past two time steps is adopted to incorporate memory in the model. Hence, a 2D discrete dynamic map is constructed. Through theoretical and numerical investigations, we show that the equilibrium point of the 2D map becomes unstable due to two types of bifurcations that are Neimark–Sacker and flip bifurcations. Furthermore, the influence of the speed of adjustment parameter on the map’s equilibrium is analyzed via numerical experiments.



2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Murtala Bello Aliyu ◽  
Mohd Hafiz Mohd ◽  
Mohd Salmi Md. Noorani

Multiple interactions (e.g., mutualist-resource-competitor-exploiter interactions) type models are known to exhibit oscillatory behaviour as a result of their complexity. This large-amplitude oscillation often de-stabilises multispecies communities and increases the chances of species extinction. What mechanisms help species in a complex ecological system to persist? Some studies show that dispersal can stabilise an ecological community and permit multi-species coexistence. However, previous empirical and theoretical studies often focused on one- or two-species systems, and in real life, we have more than two-species coexisting together in nature. Here, we employ a (four-species) multiple interactions type model to investigate how competition interacts with other biotic factors and dispersal to shape multi-species communities. Our results reveal that dispersal has (de-)stabilising effects on the formation of multi-species communities, and this phenomenon shapes coexistence mechanisms of interacting species. These contrasting effects of dispersal can best be illustrated through its combined influences with the competition. To do this, we employ numerical simulation and bifurcation analysis techniques to track the stable and unstable attractors of the system. Results show the presence of Hopf bifurcations, transcritical bifurcations, period-doubling bifurcations and limit point bifurcations of cycles as we vary the competitive strength in the system. Furthermore, our bifurcation analysis findings show that stable coexistence of multiple species is possible for some threshold values of ecologically-relevant parameters in this complex system. Overall, we discover that the stability and coexistence mechanisms of multiple species depend greatly on the interplay between competition, other biotic components and dispersal in multi-species ecological systems.



2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Shuling Yan ◽  
Xinze Lian ◽  
Weiming Wang ◽  
Youbin Wang

We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.



2008 ◽  
Vol 2008 ◽  
pp. 1-23 ◽  
Author(s):  
Toichiro Asada ◽  
Christos Douskos ◽  
Panagiotis Markellos

We explore a discrete Kaldorian macrodynamic model of an open economy with flexible exchange rates, focusing on the effects of variation of the model parameters, the speed of adjustment of the goods marketα, and the degree of capital mobilityβ. We determine by a numerical grid search method the stability region in parameter space and find that flexible rates cause enhanced stability of equilibrium with respect to variations of the parameters. We identify the Hopf-Neimark bifurcation curve and the flip bifurcation curve, and find that the period doubling cascades which leads to chaos is the dominant behavior of the system outside the stability region, persisting to large values ofβ. Cyclical behavior of noticeable presence is detected for some extreme values of a state parameter. Bifurcation and Lyapunov exponent diagrams are computed illustrating the complex dynamics involved. Examples of attractors and trajectories are presented. The effect of the speed of adaptation of the expected rate is also briefly discussed. Finally, we explore a special model variation incorporating the “wealth effect” which is found to behave similarly to the basic model, contrary to the model of fixed exchange rates in which incorporation of this effect causes an entirely different behavior.



2014 ◽  
Vol 95 ◽  
pp. 137-145 ◽  
Author(s):  
Laura Gardini ◽  
Fabio Tramontana ◽  
Soumitro Banerjee


2015 ◽  
Vol 25 (09) ◽  
pp. 1550114 ◽  
Author(s):  
Shuang Chen ◽  
Zhengdong Du

Like for smooth systems, a typical method to produce multiple limit cycles for a given piecewise smooth planar system is via homoclinic bifurcation. Previous works only focused on limit cycles that bifurcate from homoclinic orbits of piecewise-linear systems. In this paper, we consider for the first time the same problem for a class of general nonlinear piecewise smooth systems. By introducing the Dulac map in a small neighborhood of the hyperbolic saddle, we obtain the approximation of the Poincaré map for the nonsmooth homoclinic orbit. Then, we give conditions for the stability of the homoclinic orbit and conditions under which one or two limit cycles bifurcate from it. As an example, we construct a nonlinear piecewise smooth system with two limit cycles that bifurcate from a homoclinic orbit.



Sign in / Sign up

Export Citation Format

Share Document